

Pragmatic C++ Arduino Programming by Michèle Delsol

Proper names, trademarks, and designations used by the author are capitalized to distinguish
them from ordinary text. They are the property of their respective owners. The author and
publisher of this book have no intent at establishing any relationship whatsoever with the
owners of these names, trademarks, and designations.

The author and publisher have exercised due diligence as to the exactitude of the book's content
and issue no explicit or implied warranty of any kind as to the suitability of content presented
for any purposes whatsoever and assume no responsibility for errors or omissions. The author
and publisher assume no liability for incidental or consequential damages resulting from the
use of information, code snippets, and programs presented in this book.

First published via Amazon August 2023.

Delsol, Michèle
 Pragmatic C++ Arduino Programming / Michèle Delsol, first edition
Copyright © 2023 by Michèle Delsol

All rights reserved. Printed via Amazon "Print-on-demand" in the United States and in other
countries where Amazon distributes this book. This book is protected by United States and
international copyright laws. No parts of this book may be copied in any form whatsoever;
permission must be obtained to reproduce parts and the entirety of this book by any means
whatsoever: electronic, photocopying, mechanical, or other.

Indexing was undertaken via JavaScript scripts applied on manually created tags. The indexing
system was created by the author.

The marmoset monkey illustration on the front cover is an original pencil and China ink
drawing by the author.

Paperback edition : ISBN 978-2-9585628-0-9
First edition published via Amazon August 2023 in paperback, hard cover, and electronic
(Kindle) formats.

ii | Copyright

Table of contents
List of tables and figures xv
Acknowledgements xvii
Preface xix
Introduction 1
Chapter 1 Arduino and C++ 5

1.1 A short history of C and C++ 7
1.2 C++ programming 9
1.3 Microcontrollers 10
1.4 Programming languages 12
1.5 Which chip/language combination? 14
1.6 What defines C++ 16

Chapter 2 Arduino IDE 19
2.1 Arduino C++ editor 21
2.2 Preprocessor 23
2.3 Compiler 25
2.4 Linker 26
2.5 Make utility 26
2.6 Uploader (avrdude) 27
2.7 bootloader 27
2.8 Serial terminal 29
2.9 Hardware-based debugging 29

Chapter 3 Other IDEs 31
3.1 AtmelStudio 32
3.2 Visual Micro for MicrochipStudio (AtmelStudio) 32
3.3 Visual Micro for Microsoft Visual Studio 33
3.4 VS Code (Visual Studio Code) 33
3.5 PlatformIO 33
3.6 Code::Blocks 34
3.7 MPLAB 34
3.8 Visual development 35

3.8.1 Visualino 35
3.8.2 Scratch for Arduino 35
3.8.3 Blynk for Arduino 35

3.9 Artificial intelligence (ChatGPT) 35

Chapter 4 What one needs to master 37
4.1 C++ enhancements to C 38

iii

4.2 What is a C++ program 39
4.3 What does a C++ program look like 40
4.4 What to do with setup and loop 44
4.5 Syntax differences between C and C++ 45
4.6 Good programming practices 46

Chapter 5 C++ building-blocks 49
5.1 Comments 51
5.2 Constants 52
5.3 Types 53

5.3.1 Built-in types 54
5.3.2 User-defined types 56

5.4 Type qualifiers 56
5.4.1 typedef 57
5.4.2 auto 58
5.4.3 static 58
5.4.4 const and mutable 61
5.4.5 register and volatile 63
5.4.6 size_t 64

5.5 Operators 64
5.5.1 Operator precedence and associativity 67
5.5.2 Special symbol colon ':' 69
5.5.3 Special symbol double-colon '::' - scope resolution operator 69
5.5.4 sizeof operator 70
5.5.5 Bit-level operators 70

5.6 Code-blocks 72
5.7 Statements 72
5.8 Control flow statements 73

5.8.1 if (condition) {...} else {...} 74
5.8.2 for (iterate) {...} 74
5.8.3 for (each) {...} 75
5.8.4 while (condition) {...} 75
5.8.5 do {...} while (condition) 76
5.8.6 switch (value) {case1, case2, ... } 76
5.8.7 goto label 76
5.8.8 Exception handling (C) setjmp/longjmp 77

5.9 Functions and variables 78
5.9.1 Variables 81

5.10 System variables 83
5.11 Arduino specific functions 83

5.11.1 Digital and analog I/O functions 84
5.11.2 Signal functions 85
5.11.3 Timers 85

iv | Table of contents

5.11.4 Interrupts 86
5.11.5 Serial communications 87
5.11.6 Random numbers 88
5.11.7 Arduino bit functions 89

5.12 class and struct 89
5.12.1 Constructors and destructors 92
5.12.2 Bitfields 93

5.13 Arrays and indices 94
5.14 Unions 96
5.15 Enumerations (enum) 97
5.16 Save RAM with PROGMEM 98
5.17 Libraries 98

Chapter 6 C++ mechanics 101
6.1 Header files (.h) and code files (.cpp, .ino) 103
6.2 Scope (visibility) 104
6.3 Increment/decrement prefix/postfix (++/--) 106
6.4 Function creation 109
6.5 Parameter passing 112

6.5.1 Pass by value 112
6.5.2 Pass by address 114
6.5.3 Pass by reference 115
6.5.4 Pass by reference saves time, money, and RAM 117
6.5.5 Pass by reference summary 118

6.6 Polymorphism 120
6.7 Compatible numeric types 121
6.8 Strings 122
6.9 class/struct array initializations 123
6.10 Arithmetic on array items 124
6.11 Templates 125

Chapter 7 What one needs to be aware of 129
7.1 Operator overloading 130
7.2 Data packing (bit-level work) 131
7.3 Inheritance 134

7.3.1 Virtual functions, pure virtual functions, abstract classes 136
7.3.2 Cycling through derived classes 137

7.4 this 139
7.5 Function pointers 140
7.6 Inlining 142
7.7 Lambda functions 143
7.8 namespace 144
7.9 Error handling 145

Table of contents | v

7.10 C++ exception handling 147
7.11 Complex numbers 150
7.12 C++ features not supported by Arduino 150

Chapter 8 Memory management 153
8.1 Arduino memory pools 154
8.2 RAM partitioning 155
8.3 How RAM use evolves 157
8.4 Managing RAM 160

8.4.1 Available RAM 161
8.4.2 Heap 164
8.4.3 Stack frames 167

8.5 Use EEPROM to store data from run to run 168

Chapter 9 Macros 169
9.1 Macro uses 169
9.2 How to create macros 171
9.3 Multiline macros 172
9.4 Macro types 172

9.4.1 #define macros 174
9.4.2 #ifdef macros 175
9.4.3 #if defined(...) &&/|| (AND/OR) defined(...) macro 175
9.4.4 #undef macro 176
9.4.5 #include header files 176
9.4.6 #ifndef macro 176
9.4.7 Macro operators 177
9.4.8 #error macro 180
9.4.9 #pragma compiler options macro 182

9.5 Built-in macros 182
9.6 Library macros 183
9.7 Some useful macros 183

Chapter 10 PROGMEM framework 185
10.1 Basic PROGMEM concepts 186
10.2 The PROGMEM type qualifier 187
10.3 PROGMEM get functions 187
10.4 C-like PROGMEM functions 187
10.5 F() macro 188
10.6 PSTR() macro 189
10.7 PGMP helper macro 190
10.8 PROGMEM no-nos 190
10.9 Using built-in variables and memory requirements 191
10.10 char* string memory requirements and PROGMEM 191
10.11 Array of strings 192

vi | Table of contents

10.12 Storing and retrieving read-only float values 194
10.13 Storing and retrieving read-only struct and class data 194

Chapter 11 Arduino IDE bugs 197
11.1 Undo - ctrl-Z 198
11.2 Segmentation fault 199
11.3 Arduino IDE loses it 200
11.4 Checksum error 200
11.5 Stray '\357' in program 201
11.6 Invalid conversion from char'(*)[4] to uint16_t 201
11.7 Mysterious glitches solved by standardizing development 202
11.8 Sketch's serial port gotcha 203
11.9 No alert on externally modified file 204
11.10 Windows Command Processor, aka DOS box 204

Chapter 12 Gotchas 207
12.1 Why does one make mistakes? 207
12.2 Suggestions to reduce gotchas 209
12.3 Macro gotchas 210

12.3.1 Space between name and parameter open parens 211
12.3.2 Tokenization creates extra spaces 212
12.3.3 Semicolon in macro 212
12.3.4 One too many backslashes 212
12.3.5 Missing backslashes 213
12.3.6 Commenting out part of a macro 213
12.3.7 Function as macro parameter may generate side effects 214
12.3.8 Unsatisfactory macro parameters isolation 215
12.3.9 #ifdef...#endif misplacements 216
12.3.10 Unbalanced #ifdef…#endif pairs 217

12.4 C++ gotchas 218
12.4.1 C++ traps and pitfalls 221
12.4.2 One-line multivariable declarations 223
12.4.3 Mixing numeric types 223
12.4.4 Overflow/underflow during expression evaluation 224
12.4.5 Dereferencing has low precedence 225
12.4.6 Dereferencing a function pointer parameter 226
12.4.7 Redefining a variable or object which already exists 226
12.4.8 Bad pointers - failure to check allocation success 227
12.4.9 Bad pointers - using a pointer directly without assigning memory space 228
12.4.10 Bad pointers - failure to set pointer to zero after free or delete 229
12.4.11 sizeof gotchas 230
12.4.12 new int() vs new int[] 231
12.4.13 Comma instead of semicolon 231

Table of contents | vii

12.4.14 Function call - missing () 232
12.4.15 Type checking leniency 232
12.4.16 char string concatenation 234
12.4.17 Return values 235
12.4.18 No code after a label 236
12.4.19 Size of an array passed as a function parameter 237
12.4.20 float to uint32_t conversion - problem using pow() 238
12.4.21 Zero-based indexing forgotten and null string termination 239
12.4.22 Default function type 241
12.4.23 Bit-level coding and precedence 241
12.4.24 Function not called 243
12.4.25 Wrong number of parentheses or curly braces 243
12.4.26 Unwanted automatic curly brace 244
12.4.27 Negligent copy/paste leads to bad declarations 245
12.4.28 Memory corruption 245

Chapter 13 Interpreting error messages 249
13.1 Expected initializer before 'xyz' 249
13.2 Expected primary expression before 'char Foo(10, char* msg);' 250
13.3 Expected unqualified-id before '{' token - missing first '\' in macro definition 250
13.4 Expected primary expression before ')' token - forgot macro parameters 251
13.5 Expected primary expression before '{' - label gotcha 251
13.6 Expected ';' before '{' - initializer left in 252
13.7 'Serial' does not name a type - forgot a backslash in macro definition 252
13.8 Stray '\' in program - one too many '\' in macro definitions 253
13.9 Call overloaded 'myFunction' is ambiguous 253
13.10 Multiple types in one declaration 254
13.11 Misleading message following an enum declaration error 255
13.12 Inaccessible member of 255

Chapter 14 Psychological factors 257
14.1 Maslow's pyramid (motivation) 259
14.2 Psychology of computer programming 260
14.3 Cognitive dissonance and EGO 260
14.4 Good and bad habits 261
14.5 How to be an efficient programmer 262
14.6 Understand how your body and mind function 263
14.7 Plan your work offline 264
14.8 Think! 265
14.9 Incremental vs. planned programming 267
14.10 Practical considerations from a psychological perspective 269
14.11 Examples of psychologically induced errors 270
14.12 Key psychological factors 271

viii | Table of contents

Chapter 15 Appendix 275
15.1 PROGMEM framework program 275
15.2 SafeArray class 276
15.3 Pointer arithmetic 280
15.4 AtmelStudio vs. the Arduino IDE - code used or not used 282
15.5 Transmission constraints - 255 not allowed 284

Chapter 16 Bibliography 285
16.1 Bibliography - C/C++ programming 285
16.2 Bibliography - PROGMEM framework 286
16.3 Bibliography - Software Engineering 287
16.4 Bibliography - Regular Expressions (regex) 287
16.5 Bibliography - Awk 287
16.6 Bibliography - Perl 287
16.7 Bibliography - Arduino 288
16.8 Bibliography - AtmelStudio (now MicrochipStudio) 288
16.9 Bibliography - Visual Micro 288
16.10 Bibliography - PlatformIO 288
16.11 Bibliography - Espruino and JavaScript 289
16.12 Bibliography - Hardware-based debugging 289
16.13 Bibliography - Programming psychology 289

A note on the book's source code 291
About the author 293
Index table 295

Table of contents | ix

This page intentionally left blank

x

List of tables and figures

Table 1.1 - GitHub products for Arduino, RaspberryPi, and ESP32 - 11/19, 12/20 and 10/21 16
Table 5.1 - C numeric types min/max values 54
Table 5.2 - Some common type qualifiers to create derived types 56
Table 5.3 - Table of operators. 65
Table 5.4 - Symbols used as type qualifiers and as operators 66
Table 5.5 - Declaration examples. 79
Table 7.1 - Data packing into bitfields - typical examples 132
Table 7.2 - Date and time packed data - from 8 bytes to 5 bytes. 133
Table 8.1 - Flash, RAM, and EEPROM sizes of Arduino microcontrollers. 154
Table 8.2 - How RAM use evolves. 158
Table 10.1 - Memory requirements using the PROGMEM F() macro . 189
Table 10.2 - Flash memory used with and without the F() macro. 189
Table 15.1 - Min/max values of numbers which exceed 255. 284

xi

This page intentionally left blank

xii

Acknowledgements

T his book, Pragmatic C++ Arduino Programming and its companion, Defensive
C++ Arduino Programming, are the result of chance encounters which led me to
beekeeping and to create Arduino-based gadgets. Put the two together and, aha! Why

not create an Arduino-based beehive weighing system. That is how it all got started. And one
thing leading to another, I got into writing two books which address the needs of C++ savvy
DIY Arduino makers.
I must thank the many who contributed to my getting started on writing these books and
continuing it to its ultimate conclusion.
First in line is Daniel T. I am particularly grateful to him since he made me discover Arduino.
His electronics advice, despite his being a practicing pediatrics surgeon, hence electronics not
being his field at all, contributed immensely towards getting me started with Arduino.
And I thank Christine C., my psychoanalyst, whom I see regularly to express my little travails.
She has been an unconditional supporter of my endeavor.
And then there is Charlie H., a practicing physician and fellow airplane builder (RV8). He
introduced me to beekeeping - a few visits to his bee yard and I was hooked.
There is of course Xavier M., who purchased my company years back and who has since become
a friend. His continued support has contributed to my persevering in this book's endeavor.
My neighbors Martine and Olivier B. continuously supported my endeavors. My special thanks
to them. I must say that as the project advanced from milestone to milestone, we celebrated by
opening one or two bottles of Champagne - by now, a few cases have gone down our respective
esophagus.
As luck would have it, Allison (Olivier's daughter) is an InDesign professional consultant. I am
thankful to her as she agreed to create the print and digital ready document. She was patient
as she suffered through my unorthodox approach which consisted in creating tags in Word
which would be used by an InDesign JavaScript script to produce the finished book (layout,
cross references, indices, table of contents, etc.).
I must also thank daughter #1 Giselle, also an author, for her continued support.
Finally, but not least, I owe daughter #2 Pascale special thanks as she patiently proofread
both manuscripts, a total of four hundred plus A4 pages of tight letter size text. Since I am an
engineer, my thought process, hence sentence construction, tends to be a bit linear (somewhat
tedious to read). She managed to smooth things out and put some pep into many of my phrases.
And I thank all those others who manifested their support as they patiently heard me out as I
described my project.

xiii

This page intentionally left blank

xiv

Preface

T his book, Pragmatic C++ Arduino Programming, is the first book of a two-book set,
the other being Defensive C++ Arduino Programming. They are a by-product of my
current beekeeping hobby - it led me to develop an Arduino-based beehive weighing

system. On the programming side, the Arduino IDE seemed to be the perfect tool: user-friendly
and free. I installed it, pulled out my old C++ textbooks (yes, I had written some C++ in the
past), ran the Blink program on an Arduino Uno, and gradually learned to program Arduino. I
managed this at the ridiculously low cost of about $30 including the hardware. Trying out the
examples provided in the IDE and experimenting with small electronic circuits on the Uno
were immensely rewarding.
Things did not turn out as easy as I anticipated. I discovered that my C++ skills had gotten
a little rusty over time, which led me to do some serious reviewing. I started with the most
basic features of the language by doing a "Hello World" to make sure I did not miss anything.
I then spent considerable time doing breadboard work on my subsystems: opamps, clock,
radio, and GSM. This proved to be time consuming, much more than I first anticipated, but
I did manage to get the individual systems to work. I was beset by glitches: problems which
occurred occasionally, unable to make them occur systematically. Part of the problem was
electrical stability because I was using breadboards. They are fine for as long as you are dealing
with DC current; but, as soon as you start doing serial communications, poor connections and
capacitive effects corrupt signals. It is what got me into creating soldered prototype boards on
top of an Arduino ATmega2560. This combination provided both ample storage space and lots
of dynamic memory space (RAM). But I was still getting glitches. The other part of the problem
proved to be my programming - it was peppered with errors which I qualify as traps and pitfalls
and common programming errors. These are reviewed extensively in Gotchas (page xv).
Let me explain. C++ is deceptively simple. I use the word deceptively because you and I,
inexperienced C++ programmers, will be fooled by C's relatively simple syntax. You will
inevitably fall into one of many C++ gotchas - an unexpected problem will stop you dead in
your tracks and you do not have the slightest clue as to why. C++ is a minefield but do not let
this fact scare you - just be careful. You dedicated hours to debugging yet failed to identify the
culprit. I have personally been caught by every trap, pitfall, and common programming error
C++ could lay along my path.
Gotchas are very real - they will slow you down and weaken your application. If you are to
undertake safe programming, i.e., not waste inordinate time finding and eradicating your
bugs, you need to have a sound foundation in C++, understand how easily errors can creep in,
and organize your code. This is where pragmatic programming comes in, the subject matter of
this book.
In the process of reviewing my C++ skills, I found that most textbooks were overkill. By this
I mean that they address the needs of the professional C++ programmer and not the needs of
the Arduino programmer such as myself, who does it as a hobby. We Arduino programmers
need short, practical, clear explanations. Faced with a vocabulary which can become cryptic
(lambda, pass by reference, namespace, etc.), learning the language can be tedious. As a
newbie Arduino programmer, I found myself overwhelmed by the sheer quantity and depth

xv

of advice as to what, how to, and why. The C++ Core Guidelines is more than 500 pages long
(see Bibliography page xvi); although an excellent and exhaustive work, it is overkill when
addressing the needs of an Arduino programmer, and much too cumbersome to be practical.
Another example, the excellent Bjarne Stroustrup's The C++ Programming Language book
(4th edition) is 1347 pages long and covers C++ up to C++11. There is C++17, and more recently,
C++20. Bjarne's first edition is 328 pages long - the extra 1000+ pages of his 4th edition illustrate
how much the language has evolved and how much more there is to C++.
The typical Arduino programmer needs to master just a small subset of the language. Be
pragmatic - learn what you need and be aware as to what you might need later on. This book
explains in detail the essential subset and describes most of the remaining features which you
will probably never use within the context of Arduino programs.
The core C++ concepts which I believe one needs master are based upon my experience
developing my beehive weighing system - it got to be big: 35 files, 15,000 lines of code.
Unfortunately, I miserably failed to insert comments into my code to document the algorithms.
As I progressed on my application, I had a hard time understanding code I had written. This
incited me, slowly but surely, to adopt good programming practices: comment code, organize
files, develop AtmelStudio/Visual Studio/Arduino IDE interoperability, etc. As my experience
and knowledge evolved, the defensive programming concept started to materialize. After a
while, I had considerable content which led me to write a second book: Defensive C++ Arduino
Programming, a set of C++ how to: getting to know and use AtmelStudio, Visual Studio, Visual
Micro, Perl, Awk, regular expressions, and toolboxes (frameworks). The tools I learned how
to use and the frameworks I developed helped me improve my productivity and render my
Arduino application more compact, fast, maintainable, and robust. Defensive means go beyond
being good at programming with C++; it means use the right tools and techniques.

xvi | Preface

Introduction

T he two books, Pragmatic C++ Arduino Programming and Defensive C++ Arduino
Programming, are offsprings of my Arduino-based beehive weighing system endeavor.
In the process of developing it, I had to review my knowledge of C++, all the while

taking notes to consolidate my learning. I also developed frameworks to better organize my
program, more notes; these ultimately morphed into two books.
I had sufficient C++ experience, albeit a touch rusty, to develop my application. I consequently
reviewed C++ on an as needed basis. There were many advanced C++ features I did not use
but, since I was progressing nicely and since I had no need for these advanced constructs, I
concluded that they concerned professional programmers writing large applications. I did
ultimately use operator overloading and simple inheritance, got to use the & reference qualifier,
and created an exception handling like mechanism for error handling.
Lots of C++ books have been published. So why another one? The answer is that I found no
book which addresses the needs of the already savvy self-taught C++ Arduino programmer.
This book is meant to be a pragmatic primer of C++ features an Arduino programmer will use.
It separates the basic features we should know from the advanced features none of us Arduino
programmers are liable to use. It is not a reference work for professional programmers, nor a
textbook for a course. Its aim is to be a pragmatic presentation of C++ to help Arduino developers
improve their productivity and enhance their understanding of the language's features. An
additional goal is to alert the C++ programmer that the language is treacherous - its simplicity
is deceptive. You, as I did, will spend far more time debugging than developing the application.
This book covers typical errors one might make.
The title of this first book contains the word pragmatic. Being pragmatic implies that practicality
dictates "What one needs to master". Arduino developers (Atmel, ESP32, and others) need
to master basic features and have a working knowledge of advanced features. Behind the
specialized terms lie simple but subtle concepts (pointers, pass by reference, classes, etc.).
Furthermore, over the years, the language has integrated ever more complex mechanisms
(lambda functions, inlining, concurrency, multitasking, exception handling, regular
expressions, etc.). Although most of us Arduino developers do not need to use these advanced
features, they are listed and described in What one needs to be aware of (page 1).
I wrote this book with an eye towards practicality. Its content is broken up into chapters, as
follows:
•	 "Chapter 1 Arduino and C++" (page 1) covers what Arduino is, where it comes from, why

C++, and what it is good for (pros and cons), microcontrollers, programming languages,
and language/chip combinations.

•	 "Chapter 2 Arduino IDE" (page 1) introduces the Arduino development tools: the Arduino
IDE, the Arduino C++ editor, the GNU toolchain (preprocessor, compiler; linker, make
utility, avrdude, bootloader).

•	 "Chapter 3 Other IDEs" (page 1) introduces AtmelStudio (MicrochipStudio), Visual Micro
for MicrochipStudio (AtmelStudio), Visual Micro for Visual Studio (Microsoft), VS Code,
PlatformIO, Code::Blocks. It also introduces some visual development tools and using AI
(ChatGPT) to kick start specific development needs.

1

•	 "Chapter 4 What one needs to master" (page 2) - C++ building-blocks (identifiers, types,
operators, etc.) and the mechanics to assemble these into functional features (functions,
scope, type checking, polymorphism, etc.) are what one needs to master.

•	 "Chapter 5 C++ building-blocks" (page 2) are items one works with: variables, operators,
control flow statements, functions, classes, etc.

•	 "Chapter 6 C++ mechanics" (page 2) are rules which govern using the C++ building-blocks -
they should be well understood. You should know how the pass by reference mechanism
works, organize bitfields, and understand how operator precedence affects a statement's
evaluation, and more.

•	 "Chapter 7 What one needs to be aware of" (page 2) - These are the C++ concepts the
Arduino developer should be aware of but would probably not use.

•	 "Chapter 8 Memory management" (page 2) - Having enough memory throughout an
application's life cycle is crucial to its performing reliably. Memory allocations and
function calls consume memory; the programmer should at all times ensure that the
application's needs are met.

•	 "Chapter 9 Macros" (page 2) are a unique feature of C++ - They are handled by the
preprocessor, a text replacement, conditional inclusion, and file inclusion utility
which preprocesses the source file before passing it on to the compiler. They grant the
programmer flexibility not available in other programming languages.

•	 "Chapter 10 PROGMEM framework" (page 2) - Arduino provides facilities to store read-only
variables and constants in flash memory, thereby providing the possibility of saving
considerable RAM space.

•	 "Chapter 11 Arduino IDE bugs" (page 2) - Nobody is perfect. The Arduino IDE, the editor,
compiler, and linker in particular, manifest some annoying bugs which finally pushed
me into using AtmelStudio (and later Visual Studio/Visual Micro) as my main Arduino
programming tool.

•	 "Chapter 12 Gotchas" (page 2) - Since C++ programming is akin to walking through a
minefield, a roadmap of mines (gotchas) should be included in a C++ programmer's
training. There are two kinds of gotchas: macro gotchas and C++ gotchas. Given that the
preprocessor is a rather unsophisticated text find and replace processing tool, it can be
a source of surprising runtime problems, particularly since the preprocessor does not
generally produce error messages. Both macro gotchas and C++ gotchas are extensively
expanded upon.

•	 "Chapter 13 Interpreting error messages" (page 2) - It is unfortunate that compiler designers
remain entrenched in their highly specialized lingo - some error messages are downright
ludicrous.

•	 "Chapter 14 Psychological factors" (page 2) - Our minds are complex machines. Be careful
with your subconscious - it will make you do things which are not good. Laziness,
persisting down an erroneous path, not preparing sufficiently before undertaking a task -
all these can lead to excessive debugging, duplicate work, and unnecessarily complex
algorithms.

•	 "Chapter 15 Appendix" (page 2) presents details on setting up a SafeArray class which
overloads the index [] operator to check on possible out-of-bounds array indexing
conditions, doing pointer arithmetic, defining code used or not used, and a how-to

2 | Introduction

avoid using 255 values during radio transmission.
•	 "Chapter 16 Bibliography" (page 3) covers C++ books, YouTube videos, documents, and

links I found relevant.
•	 A note on the book's source code (page 3) details how to get the book's source code from https://

md-dsl.fr - MIT Open Software License.
•	 About the author (page 3) provides insight as to why I wrote this book and its companion:

Defensive C++ Arduino Programming.
•	 Index table (page 3) - Since most technical books are reference works, a comprehensive

index table is a must. It is frustrating to open a book, look for something which is surely
in the book, yet it is not in the index table. The reader should find, via the index table, just
about everything that is in the book.

If your Arduino program is thousands of lines of code, having a good understanding of C++ is
not good enough. You need to be pragmatic, which means know and understand enough to get
the job done correctly. You also need to apply defensive programming techniques: work with good
tools, understand how to organize workflow, avoid reinventing the wheel. You need to use
frameworks and adopt a professional developer mindset. The companion book, Defensive
C++ Arduino Programming, meets these needs; it should help you improve your productivity
and render your application more robust.

 | 3

This page intentionally left blank

4

Chapter 1 Arduino and C++

Arduino and C++

A rduino is a fantastic tool. It grants hobbyists access to microcontroller development
at a ridiculously low cost. As of 2022 it costs a mere $30 plus a little more for the
electronic components. On the software side, the Arduino IDE is incredibly easy

to use. Furthermore, its learning curve is short, and it is free. With this in mind, you should
seriously consider a contribution to the Arduino group if you are to use Arduino extensively.
In a word, using Arduino is a win-win. Get an Arduino board, get a breadboard and a few
components, install the Arduino IDE, and voilà, you are ready to go. Add more components,
bring in more functionality, and you will find that your initial Arduino endeavor is turning
into a major project - it can be a lot of fun.
Before continuing, a word on "Why C++?". Microcontrollers are expensive; consequently,
using the smallest possible microcontroller to meet the needs of a given job is a top-level
design imperative. This is why practically all programs which need to be as compact and
fast as possible are written in C++. There is just no other language which can beat it aside
from assembler but using it is prohibitively costly from a development, debugging, and testing
perspective. Choosing a chip/language combination is expanded upon in Which chip/language
combination? (page 5). And now, back to Arduino.
Creating a beehive weighing system is what got me into learning what I needed to know on
Arduino and C++. My project (as well as most projects) may be summarized as follows:
•	 Proof of concept - I initially worked on breadboards during the proof of concept of

individual components: strain gages connected to opamps, optocouplers, voltage
regulators, radio communications, sending/receiving SMSs, and clocks.

•	 Prototyping - I migrated from breadboard Arduino UNO to soldered prototype boards on
top of ATmega2560 boards.

•	 Final product - I created my own stand-alone Atmel based PCB directly programmable
from my PC.

•	 Programming Arduino - As I worked on the hardware, I progressively learned how to use
the Arduino IDE and the Arduino specific C++ mechanisms to develop the program
which would drive the beehive weighing system.

At some point during the development phase, I looked at AtmelStudio. What I initially
discovered prompted me to conclude that the learning curve was quite steep and that importing
an Arduino project was complicated. I therefore continued with the Arduino IDE despite the
occasional segmentation fault or mess up my source code undo (ctrl-Z). Then, one day, Atmel
released AtmelStudio V7, the all-important new feature being its ability to create AtmelStudio
projects directly from Arduino .ino sketch files. This new feature, plus the fact that I was fed up
with ctrl-Z messing up my source code, and the segmentation fault, got me to try AtmelStudio. So, I

5

buckled down and dedicated time to AtmelStudio - its learning curve proved to be surprisingly
short. I tried importing a small sketch and was successful. Wow! It was easy and worked
well. Then I tried it on my large beehive weighing system Arduino program. To my surprise,
importing my 35 files/15000 lines of code was quick and flawless. I gradually discovered how
a real professional IDE could make coding a lot less stressful. It was a revelation - I was in
programmer heaven. From then on, my programming experience changed for the better. The
AtmelStudio learning curve turned out not to be steep at all - I was operational in no time.
What is more, I developed a technique to easily switch from the Arduino IDE to AtmelStudio
and vice versa with little effort. It was just a matter of activating one of two macros (#define
ATMEL_STUDIO or #define ARDUINO_IDE). You will find full details on the AtmelStudio/Arduino IDE
interoperability framework in the companion book Defensive C++ Arduino Programming.
Since there were other possible IDEs, I looked at PlatformIO, Visual Studio, Visual Micro, and
Code::Blocks, just in case they proved to be an improvement over AtmelStudio. PlatformIO is a
formidable tool in that it supports Arduino, ESP32, and other microcontrollers. It also supports
hardware-based debugging (in a limited way for Arduino), and teamwork configuration
management via external tools. As for Code::Blocks, it looks somewhat like AtmelStudio, but
the similarity ends there. I was not able to import an existing Arduino project into it. It might be
possible, but it looks like being a real hassle. I consequently stopped testing it. This being said,
there might be a solution which requires doing a little research. I shall conclude by saying that
I found AtmelStudio (and later Visual Studio/Visual Micro) user-friendly and powerful enough
for my requirements. You will find short descriptions of these tools in their respective short
introductory chapters. See AtmelStudio (page 6), Visual Micro for MicrochipStudio (AtmelStudio)
(page 6), Visual Micro for Microsoft Visual Studio (page 6), PlatformIO (page 6), and Code::Blocks
(page 6). These five tools are described in more detail in the companion book Defensive
C++ Arduino Programming (see Bibliography page 6).
But walk before you run. For a more detailed presentation of the Arduino solution see Arduino
IDE (page 6). This chapter, Arduino and C++, covers the following themes:
•	 A short history of C and C++ (page 6) - In the old days, computer manufacturers like

IBM (mainframes), Digital Equipment (VAX computers), and others created their own
operating systems and programming languages. This means that once a business
decided upon a specific computer, it got locked in as its applications could not be ported
to other computers. The need for a portable operating system and programming language
combination became pressing. MIT worked on such a system (multics) - Bell Labs did
more work on it to finally produce Unix and the C language. Later on, Bjarne Stroustrup,
while working on his PhD thesis, came up with an object-oriented extension to the
C language; he later named C++.

•	 C++ programming (page 6) - As Unix proliferated, mainly on large computers (PCs and
Macs were relegated to being desktop computers), the C language became a standard
for developing mission-critical applications. It however quickly became apparent that C
programming (procedural programming) was a painstaking non-programmer-friendly
way of developing applications. The price to pay was complexity. The aha moment of
the industry was "Let programmers create their own user-defined types" (dixit Bjarne
Stroustrup) and this is how C was enhanced to being C++.

•	 Microcontrollers (page 6) and the CPU which drives your PC are really one and the same
electronic device type in that they are conceived to be programmed, i.e., intelligence

6 | Chapter 1 - Arduino and C++

can be programmed into them. However, the term microcontrollers refers to embedded
devices such as in cash registers, in my beehive weighing system, etc. For small DIY
projects, Arduino (Atmel 8-bit architectures) is an excellent choice.

•	 Programming languages (page 7) - When choosing a programming language, a host of
considerations come into play: programming ease, application speed and compactness,
programming languages you already know, etc. Most of the time, the choice is a
compromise between several opposing criteria. C++ excels when application speed and
compactness are crucial. It is however a time-consuming language to program with as
compared to Python.

•	 Which chip/language combination? (page 7) - Choosing a programming language and a
chip to build an application on are interrelated. It all depends upon what you know and
your priorities. The three main chips one would consider for small DIY projects are
Arduino (Atmel 8-bit chips), RaspberryPi, and ESP32. And then you would short list
C++ and Python as the programming languages. That is six chip/language combinations.
Which one to opt for? I personally chose Arduino/C++ mainly because I wanted the
smallest, fastest applications, even though this choice would cost me extra development
time.

•	 What defines C++ (page 7) - Having settled on C++ as the programming language, the
questions are: What is it? What does it look like? How does one use it? What can it do for
you? One should start by looking at C, how it differs from other programming languages
by providing the programmer features not generally available elsewhere such as a
preprocessor (macros), direct work on memory addresses, bit-level manipulations, simple
syntax, rich set of operators, etc. Once you have gotten a grasp of the C language, add
object-oriented programming (user-defined types) and voilà, you understand what C++ is.

The pages which follow cover the above, the nitty-gritty of C++ programming (see What one
needs to master page 7).

1.1 A short history of C and C++
In the old days, computers were programmed in machine language by way of an assembler.
It transformed source level machine instructions into machine code - it assembled machine
instructions, hence its name. Such programming proved to be extremely time consuming but
there was no other way. Let me illustrate machine language.
Suppose you wanted to do a simple addition such as

c = a + b
The above is classic source code in just about any programing language. The machine language
equivalent would look like this:

Transfer content of memory location A to register 1
Transfer content of memory location B to register 2
Add contents of register 1 to register 2
Transfer content of register 2 to memory location C

One line in a higher-level language replaces four lines of machine language code, making it
considerably more understandable.
Writing machine language code is unbelievably time consuming, difficult to read, error prone,
and a debugging nightmare. These impediments were resolved with the development of

1.1 A short history of C and C++ | 7

higher-level programming languages to abstract away the architecture of the microcontroller.
Unfortunately, at the time, each computer manufacturer developed its own higher level
programming language - hence there was no portability across computer manufacturers.
In the mid-60s, M.I.T. started developing a multitasking operating system named multics.
Taking multics as a model, Bell Labs created Unix and the C language to develop it with - C
and Unix were meant to be portable across machines. The initial Unix operating system was
created along with an initial minimalist C compiler. C's initial characteristics included core
language features plus standard library components. Variables, return values, etc. had to be
declared as to type so that the compiler could allocate space. Individual program modules were
compiled and linked together to create an executable file. This opened the way to precompiled
library modules to encapsulate predefined functions.
From then on, Unix developers used the C language to both extend Unix and to extend the
C language and compiler - the C language was used to extend the C compiler which was then
used to extend the C language; it was meant to be both programmer friendly and general
purpose. Its basic features were flexible built-in numeric types, a rich set of operators to
manipulate the data, facilities to create complex numeric types, control flow statements, and
functions to encapsulate logic. It became a procedural programming language capable of
creating compact code which ran efficiently on many computers.
Then came object-oriented programming. Before exploring how and why it came about,
you need to understand a fundamental concept: simplicity. It is one of the keys to achieve
programmer productivity and create efficient, robust applications. Let me explain.
Procedural programming languages evolved but they still lacked features to facilitate top-down
programming (program the way one thinks). The question raised is: What is the fundamental
feature a language should have so that the programmer can write clear, readable, maintainable code?
Before reading on, think about this and try to answer the question. I personally was surprised
by the answer: Make it so that programmers could create their own types. This is what Bjarne
Stroustrup said in a recent interview. User-defined types do away with detail/clutter. It enables
top-down work - programming becomes cleaner. Start by laying down the overall architecture
and later on, fill in the details (bottom-up programming).
Procedural programming languages do sort of support user-defined types. Sure, you can create
a struct which in a way is a new type but that will not take you far. A C struct does not have
functions - work on its content must be handled by global functions. Imagine trying to build
entities such as boxes, spheres, and cylinders in C. You can but the logic will be spread out over
individual global functions such as

float VolumeSphere(struct _sphere);
float VolumeBox (struct _box).

Furthermore, logic is limited since there is no user type which could abstract away all the
different physical containers one might want to deal with.
User-defined types became the means whereby programmers could simplify their code. Algol
(Algorithmic Oriented Language) is the first language to implement this concept. Algol led to
Simula which Bjarne Stroustrup used as a starting point to create a C with classes language
for his PhD thesis, which he later named C++. However, he was not the only one working on
object-oriented programming. Other object-oriented programming languages came into being
in the 80s (e.g. Smalltalk and Objective C). Encapsulation enabled the programmer to enclose
related functionalities inside an entity (call it a class), a class being a programming feature

8 | Chapter 1 - Arduino and C++

which contained both data and functions to act upon the class's data.
C++ became generally available in 1985. It extends C into the object-oriented programming
realm. It is not a better C - it is a C with classes, a C with user definable types. It is C++, an
object-oriented programming (OOP) language based on user definable class definitions which
contain functions (methods) to work on the class's data. It is worth noting that an Arduino
programmer could write his/her program entirely in C - functions and variables only. However,
a sprinkling of C++ here and there will simplify code, clarify program logic, assure better
maintainability, reduce development time, and bring other desirable results.
The key points to understand are:
•	 Good code needs to be simple - simplicity makes life easier for the programmer and gives

the compiler a chance to generate efficient (fast and compact) machine code.
•	 To achieve simplicity, the programmer must be able to create his/her own types. This

can be achieved via encapsulation. It is the process of enclosing data and functionalities
inside an entity - call it a struct or a class. class specific functions manipulate the class's
data. The programmer may thus define his/her own types and use them the same way as
using ints, chars, floats, etc. See class and struct (page 9).

•	 Features such as inheritance and polymorphism enhance user-defined types (classes).
These concepts are covered further on.

•	 Strong type checking (ex. when passing parameters to functions) became an added
feature of C++. The compiler will trigger an error if you pass a char* instead of a float,
thus a safer language than the original C language.

•	 Having understood the above (the big picture), the rest is details.
C++ has evolved considerably since 1985. New features which address the needs of highly
skilled professional programmers have been added, two of which, concurrency and regular
expressions (regex), are particularly noteworthy. The current (May 2023) standard is C++20 -
C++23 is in preview phase (see Wikipedia C++)
One last item merits attention: Why the ++ in C++? Bjarne Stroustrup considered that the
++ operator, which means increment, was an accurate presentation of his enhancements to
the C language. C++ is C incremented with user-defined types (class). Furthermore, + stands
for positive and ++ is doubly so. The ++ in C++ could also be viewed as a marketing gimmick.

1.2 C++ programming
When choosing a programming language, it is often a tossup between programming ease and
other criteria. When coding for microcontrollers, code compactness is all important because
the smaller the code, the smaller the microcontroller, the smaller the cost.
If programming ease were to be the most important criterium, Python would prevail over C++.
If compactness were to far outweigh programming ease, the most efficient language would be
machine code (assembler), but this proves highly impractical as development time becomes
prohibitive. C++ programming is a good compromise in that it is programmer friendly and
generates compact code. It has been developed to enable compilers to be close to the underlying
microcontroller's architecture, yet it offers the programmer a syntax that is easy to implement
with sufficient built-in features to accomplish the most sophisticated programming tasks. If
some machine code for critical program sections were required, the programmer could resort
to inlining assembler code within the C++ code.

1.2 C++ programming | 9

From a code compactness perspective, C++ differs from Python in that C++ is a compiled
language, whereas Python is an interpreted language. C++ does not need an interpreter to
be uploaded into the microcontroller to get the program to run, such as Python requires.
C++ source code is converted into a machine executable file and then uploaded into the
microcontroller. This is why C++ code is much more compact than Python's and faster.
Historically, C, Basic, Fortran, Pascal, and other 3rd generation programming languages
provided the programmer with fundamental mechanisms common to most programming
languages: bottom-up programming. These include algebraic expressions, variables and arrays,
logical expressions, program control flow mechanisms, and mechanisms to encapsulate data
(struct in C, record in Fortran, ...) and logic (functions, methods, subroutines, procedures, ...).
Basic has evolved into Visual Basic and is extensively used for Microsoft Word, Excel, etc. related
development. Pascal has morphed into Delphi which has its own following. Fortran is still much
used by engineers despite conventional wisdom which says that it is dead. And C has evolved
into C++ (object-oriented programming OOP). Somewhere along the line, Microsoft invented C#
(C-sharp), similar to C++, specifically tailored for Microsoft .NET development.
C differs from other 3rd generation programming languages in that it was designed for the Unix
operating system. It was to be small yet provide the programmer with the user friendliness of
3rd generation programming languages (Basic, Pascal, Fortran, etc.). Designed for professional
programmers, it assumes that the programmer knows what he/she is doing. C does not protect
programmers from themselves the way Fortran does. Because of this fundamental design
feature, C requires that the programmer be good otherwise, gotchas will take their toll: array
overruns, memory corruption due to unallocated pointers, improper numeric type usage, stack
overflow, and more. These are extensively described in Gotchas (page 10).
It is well worth repeating that C++ is deceptively simple. Do not stop with learning how to write
individual lines of code. You should understand C++'s underlying concepts. This is what this
book is all about - it explains how to use the language. Adhering to the precepts presented will
increase your productivity by helping you avoid C++'s traps, pitfalls, and programming errors.
This book is meant to be a reference of C++ features you are likely to use. It also covers features
which you are unlikely to use but which you should be aware of. For a more complete coverage
of C++ features, you may consult GCC's excellent manual (https://gnu.org/software/gnu-c-manual/
gnu-c-manual.pdf). It is clear, concise, to the point. You could also read Bjarne Stroustrup's
The C++ Programming Language book, 4th edition as it is the most complete book on C++. Do
not start at page 1 and read on - skim through it, get a general understanding of its contents
so that later on you would know where to go to deepen your understanding of some specific
C++ feature. It is a big book, 1347 pages.

1.3 Microcontrollers
Microcontrollers differ tremendously from one another. The question is: Which microcontroller
should one choose for one's project? Below are a few non exhaustive features which characterize
a microcontroller:
•	 Register size - Microcontrollers can have 8-, 32- or 64-bit registers. This means that a

unit of storage may be small or large. Types such as bytes (8 bits), integers (16 bits),
long integers (32 bits), etc. are generally supported, they do not depend on the register
size. This being said, it remains a fact that the larger the register size, the faster the

10 | Chapter 1 - Arduino and C++

application.
•	 Speed - Are we dealing with mega or gigahertz? This affects the application's speed,

which may be critical when doing signal processing. The microcontroller's clock rate
and register size duo determine speed.

•	 Memory - Microcontrollers generally have three types of memory: dynamic (RAM),
flash memory (where the application, the bootloader, and PROGMEM data reside), and
EEPROM (permanent storage available to the application). See Arduino memory pools
(page 11).

•	 Ports - Does the microcontroller provide digital and analog ports? Digital is one of two
voltages: HIGH or LOW (e.g. +5V or 0); Analog is continuous between HIGH and LOW.

•	 Timers - Can the microcontroller supply time? With what resolution?
•	 Clocks - Can the microcontroller keep date/time of day? With what precision?
•	 Interrupts - Does the microcontroller support interrupts? How? Both hardware and

software interrupts?
•	 Communications protocols - Does the microcontroller support WiFi, Bluetooth, Serial,

etc.?
Here are other considerations when choosing a microcontroller.
•	 Programming languages - What languages can the microcontroller be programmed with?

C++ only? Python?
•	 Operating system - Does the application run directly once it is loaded? Or does it require

an interpreter? This has an impact on memory requirements since the operating system
or interpreter require memory.

•	 Multitasking and concurrency - Multitasking means run two or more tasks not necessarily
concurrently - the tasks could run in a round-robin fashion such as do one thing,
stop doing the one thing and do another for a while then come back to do the one
thing. Concurrency requires two or more processors so that tasks can run in parallel.
Multitasking could be done with one processor only, such as happens whenever an
interrupt triggers an ISR (interrupt service routine).

•	 Costs is often an important issue. Is the microcontroller available as a standalone or only
as part of a board? At what cost? It may be desirable to use boards such as Arduino and
RaspberryPi for development purposes, then migrate to custom made PCBs in which the
microcontroller sits alone. Is this feasible?

Many other features characterize a microcontroller. Analyzing the most common ones in detail
is beyond the scope of this book. In my humble opinion, the three most used microcontrollers
for DIY projects are Atmel microcontrollers (Arduino - available as standalone), RaspberryPi
and ESP32 (these two mainly available on boards, hence considerably more expensive).
•	 Arduino - The term Arduino refers to a family of boards originally based on 8-bit Atmel

microcontrollers, later extended to other microcontrollers along with an integrated
development environment IDE. The creators of Arduino designed a software tools/
microcontroller boards combination that is technically referred to as cross-development.
You create code on a computer and then upload the executable into a microcontroller.
There is usually no operating system. A small application (bootloader) transfers control
to the application which resides in flash memory. Instructions are then transferred

1.3 Microcontrollers | 11

from flash memory into the microcontroller's registers, one at a time, for execution.
This feature, combined with a low-level language such as C, maximizes the use of the
microcontroller.

•	 RaspberryPi is a family of boards which can be programmed in Python, C++, and other
languages. They interface with an operating system thereby enabling applications to
become full featured miniature computers, complete with keyboard, screen, and SD
card. They can be used to create terminals of all sorts such as cash registers, payment
terminals, and facilities access systems. However, RaspberryPi may be overkill for small
IofT devices and DIY devices, and it costs more than Arduino.

•	 ESP32 - Power characterizes the ESP32 since it is a 32-bit processor. It is in many ways
a super Arduino. It can even be programmed via the Arduino IDE. Because it has two
cores, it can undertake concurrency, i.e., run two tasks in parallel. Furthermore, it
supports WiFi and Bluetooth.

There are many more choices when choosing microcontrollers, it all depends upon what the
application needs to do. But the three listed above (Arduino, RaspberryPi, and ESP32) will
fulfill a majority of DIY project needs.

1.4 Programming languages
For the sake of completeness, I have listed below short descriptions and features of leading
programming languages, namely: C/C++, C# (C-sharp), Python, HTML, JavaScript, VBA, PHP,
Go, Delphi, Java, Fortran - forgive me if I left out your favorite programming language:
•	 C++ is powerful in that it generates small fast code. It has a preprocessor which turns

out to be priceless (more on that later) and there are lots of C++ libraries. Practically
all major Open-Source Software is written in C++. It has frameworks for multitasking
(task parallelization) and more. But it comes with a cost because it is fairly complex
and you are constantly introducing programming errors (inadvertently shooting
yourself in the foot), which sometimes takes forever to resolve. I should venture to say
that programming in C++ takes 3 to 5 times more time than programming the same
logic in other programming languages unless, of course, you are an expert seasoned
C++ programmer. C++'s additional programming time burden is offset by the application
being considerably more compact than had it been written with another language. This
reduces the hardware cost. Its faster execution speed could be another benefit. This
fact alone is all important when undertaking signal processing. If you are dealing with
events in the millisecond range, Python and other programming languages will not do.
Same with image processing, if you are to process a large number of data points, in the
megas or more, speed is required.

•	 C# (C-sharp) is a Microsoft programming language tied to the .NET Framework. It is
an OOP language similar to C++ and Java. It provides useful high-level features not
included in C++ such as array bounds checking, detect attempts using uninitialized
variables, static garbage collection, etc. C# can be used for embedded development via
the Microsoft .NET Micro Framework. The following is the description I found in the https://

old.dotnetfoundation.org site: "The Microsoft .NET Micro Framework is an open source
platform that enables you to manage C# applications for source constrained embedded
devices". It is fully integrated within Visual Studio. I have not tried it because I do not

12 | Chapter 1 - Arduino and C++

intend to learn C# programming at this time; but it is good to know that it exists.
•	 Python is an interpreted language - its learning curve is shorter than C++'s. It runs on

RaspberryPi therefore, if that is your platform, why not? It has a built-in debugging
framework which simplifies development. But Python is slower, and the code is
larger because it is an interpreted language. Source code statements are read into
the interpreter one statement at a time and executed. This means that the target
microcontroller must load the Python engine and source code, thereby occupying
precious RAM. It has other drawbacks such as neither being adapted to graphics nor to
database management nor to multitasking. If you can live with these limitations, then
program in Python. You will get your application up and running sooner than doing so
in C++.

•	 HTML (Hypertext Markup Language) is what makes Web pages look the way they do.
It can be enhanced with Cascading Style Sheets (CSS) and with JavaScript for more
sophisticated rendering.

•	 Java - The idea behind Java is "Write once. Run anywhere!". Java is an interpreted
language as opposed to being a compiled machine code language. A Java compiler
transforms source code into an intermediate code (p-code) which is then interpreted
and run by a Java virtual machine which sits in the computer running the code. It is
object-oriented much like C++. It is widely used. The Arduino IDE V1, for example, is
written in Java. At this juncture, I know of no Java virtual machines for the common
microcontrollers.

•	 JavaScript programming was originally developed for client-side Web development.
It is the logic behind the Web pages. One would consequently think that it is not an
embedded development programming language - this is a bad assumption. I came across
JavaScript being used for Espruino development (See Bibliography page 13). JavaScript is
also extensively used in Adobe products (InDesign, Photoshop, etc.) to automate tasks.
Create a script in JavaScript and run it instead of repeatedly opening dialog boxes to do
work.

•	 PHP applications sit on Web servers to generate custom Web pages. For example, a
hotel reservation system receives input from the user - the server receives the request,
processes it, and sends an HTML and JavaScript code response generated by a
server-side PHP program.

•	 VBA (Visual Basic for Applications) - This Microsoft specific programming language
enables automating tasks inside and between Office documents. If you have Word,
Excel, PowerPoint, or other Microsoft tools, you have VBA. It is a full-fledged
programming environment which includes most of the features of a good IDE: syntax
sensitive programmer editor, interactive debugger, real time variables display, watch
window, function calls, and more.

•	 The Go programming language is recent. A C++ programmer will be immediately at
ease with its syntax. Take a tour of the language - it contains lots of interesting built-in
features not available in C++, which makes it enticing. It even supports concurrency
(concurrency means simultaneous multitasking - parallel processing). This can
dramatically improve an application's speed if the microcontroller is multicore, and the
operating system or application supports multitasking. The Atmel microcontrollers used

1.4 Programming languages | 13

on Arduino being single core, concurrency is not an option.
•	 Delphi, aka object Pascal, is today's successor of the ubiquitous, so popular, Turbo Pascal

written by Philip Kahn back in the late 80s. One could say that C++ and C# meet the
needs of professional programmers; Fortran meets the needs of engineers; Delphi meets
the needs of general programming. It features rapid visual components drag and drop
application development. As for Delphi for Arduino, I did find some Delphi references for
creating Arduino applications; however, the process seemed somewhat complicated. At
some point in time (2017), the big Delphi news was Visualino (page 14), a rapid Arduino
drag and drop development environment built with Delphi; but this product seems to
have been dropped because it has now been six years that no work has been done on it.
My impression is that one would be better off using C++ and the Arduino IDE or some
other tool. But if Delphi is the only programming tool you know, give it try.

•	 Fortran - But isn't it a dead language??? No! Large industrial firms use it extensively
to this day. Intel proposes a Fortran compiler which it supports just as actively as its
C++ compiler. Fortran means Formula Translation - it addresses the needs of engineers.
C++ addresses the needs of professional programmers who need to write fast, compact
code. C++ assumes that programmers know exactly what they are doing. This is not the
case for Fortran - it assumes that programmers should be protected from mistakes they
might make. For example, in Fortran, array overruns cause a runtime error. In contrast,
C++ allows programmers to index an array way outside the array's limits - the program
will continue running, and eventually crash long after the damage was done.

The question remains: Which programming language should be chosen for microcontroller
development? Python, C++, or some other language? You could use Python on Raspberry or
other microcontrollers, but these carry a cost. The generated program is considerably bigger
and slower than the equivalent program written in C++. If the program were to be small relative
to the microcontroller, why not go for Python, it is an easier language to work with, but you may
fall into a trap. As your program grows in size and complexity, and memory usage becomes
an issue, you might be forced into a serious rethink. In a nutshell, C++ is the programming
language of choice to bring hardware costs down. The smaller the program, the smaller the
microcontroller to do the job, the lower the cost.

1.5 Which chip/language combination?
I have introduced C and C++ because they have been all-important in embedded microcontroller
application developments. Although microcontroller C++ development has been historically
reserved for professionals, the past 10 years has seen a proliferation of new chips and
programming environments which has brought both the learning curve and cost down. Today,
you may choose one of several microcontrollers and languages to program them with. You
will be faced with several options, such as Arduino, RaspberryPi, ESP32, WiPy, Espruino and
others, and two mainstream programming languages: C++ and Python.
There are other programming languages (short review above) but, for microcontroller
development, C++ and Python constitute the short list. Choosing the microcontroller first
and then choosing the programming language or vice versa poses a dilemma. If you choose
C++, you can opt for Arduino development and other microcontrollers. If you choose Python
or other languages, Arduino may prove problematic. It all hinges on the application's

14 | Chapter 2 - Arduino and C++

requirements and what you are comfortable with. For example, the Arduino IDE can output
machine code from C++ for a limited set of microcontrollers. MicroPython has interfaces for
more microcontrollers (RaspberryPi, WiPy, Espruino boards, ESP32, ESP8266, and there is
some support for the Arduino Atmel series).
The question remains: Which chip/language combination? Here are some considerations:
•	 What you already know - You may be a seasoned Python programmer and learning

another language may prove to be a daunting task which you do not want to embark on.
You may want to choose a microcontroller compatible with what you know.

•	 Hardware costs ultimately depend on the microcontroller choice and size, but it is a
given that the smaller the microcontroller, the lower the cost.

•	 Microcontroller features - You may require features available on certain microcontrollers
only, such as concurrency, multitasking, multiple hardware serial ports, digital and
analog ports, power output, low power consumption (sleep and active), clock, interrupts,
memory, etc.

•	 Language features - Your gizmo may require specific features easily implemented by some
languages and not by others. Concurrency, supported by the Go language and recently
by C++, come to mind. In general, most languages support the same features - what you
can do with one, you can do with another, which means that language features are
generally not an issue.

•	 Development time - This can be an issue as you will certainly spend considerably more
time writing and debugging C++ programs than Python programs.

•	 Devices, sensors, hardware support - Your gizmo may interface with a variety of sensors.
Your search in GitHub for 3rd party libraries which support your devices may dictate
your microcontroller/language choice. If you do not know what GitHub is, do yourself a
favor, go to github.com - you will discover archives of development software to meet just
about every imaginable need.

•	 Development environment - Is there a development environment for your microcontroller/
language combination? Is it user-friendly? Is it robust and reliable? Does it generate good
code?

•	 Futureproofing your knowhow - Make sure that the language and microcontroller
combination you choose is evolving and that it is experiencing increasing adoption.

•	 Employment - Why not choose a microcontroller/language combination which has real
employment opportunities?

When deciding upon a microcontroller/language combination, each of the above will carry
some weight. In my case, I chose Arduino with C++ due to the following:
•	 Devices, sensors, hardware support for the components I needed were available (GSM

board, DS3231 clock, DTH22 temperature/humidity sensor).
•	 Arduino costs (board and microcontrollers) being ridiculously low could not be ignored.

Furthermore, alternative Arduino microcontrollers (ATmega2560, ATmega328P, Nano,
and others) enabled me to adapt the microcontroller to the application's requirements.
Low hardware costs were an important factor.

•	 The Arduino IDE is user-friendly and had just enough features for me to get started. It
is only later on, as I honed my skills, that I switched to AtmelStudio (and later Visual

1.5 Which chip/language combination? | 15

Studio/Visual Micro) - it improved my productivity tremendously. See Other IDEs (page
16) and the companion book Defensive C++ Arduino Programming which fully describes
using them.

•	 Current knowhow - I have programmed in C++. The learning curve was consequently not
a factor - I just needed some refreshing. I did consider using Python since I should be
more productive, but since C++ created considerably more compact (also faster) code and
Python support for Arduino at the time seemed to be experimental - choosing Arduino
with C++ was a no brainer.

Arduino's ubiquity was an important reason for my choosing it. The likelihood that it might
become obsolete seemed far off in the distant future - I qualify it as being futureproof. There
are more than 200,000 Arduino libraries which cover just about any device a developer might
need. Arduino being the number one choice among possible microcontrollers (RaspberryPi,
ESP32, and others), libraries get created for Arduino first, then progressively for other
microcontrollers. Searching GitHub with the keywords Arduino, RaspberryPi, and ESP32
yielded the following:

GitHub search Nov. 2019 Dec. 2020 % increase Oct 2021 % increase

Arduino 159706 194839 22% 221844 14%

RaspberryPi 12682 15607 23% 17821 11%

ESP32 9982 18497 85% 26720 14%

Table 1.1 - GitHub products for Arduino, RaspberryPi, and ESP32 - 11/19, 12/20 and 10/21
My research of GitHub libraries yielded interesting results. The most immediate conclusion
is that there is from five to ten times more content for Arduino than for Raspberry Pi and for
ESP32. Furthermore, over a one year's span (2019 to 2021), ESP32 GitHub tools increased by
85%, 15% the following year. The first year witnessed a lot of new stuff for it as it was a new
microcontroller. As for Arduino and RaspberryPi, they increased by 14% and 11% respectively
which reflects a mature environment.

16 | Chapter 2 - Arduino and C++

A note on the book's source code
 Frameworks source code: You may download the complete as is source code from https:// md-dsl.fr/c-ar-
duino-programming, modify code to your heart's content, and use it free of charge at your own
risk on a non-commercial or commercial basis. It is subject to an MIT open-source type license
agreement with some restrictions, as follows:

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to incorporate it inside of
an executable or other machine language component without restriction for personal
or commercial use. The Software may not be redistributed as source code or in any
recognizable human readable form in any form whatsoever for any use whatsoever.
The Software is the property of Michèle Delsol (France), copyright 2023, USA and
international. For any questions concerning use of the software contact Michèle Delsol at
CPParduino@md-dsl.fr.
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Note that some frameworks have benefited from extensive development work, and they are
quite solid; others are in their infancy and may be buggy.
You will find, throughout this book, code snippets, classes, functions... to illustrate how C++
works. They cover a lot of material. Some of them are short and to the point; others are longer
and can be more or less complex. I have tested all of them, at least I think I have, which means
that you might find omissions, mistakes, inaccuracies... If you happened to come across such
failings, please send me an email at cppArduino@md-dsl.fr explaining what it is you think is
wrong. I shall look into it, try to respond, and bring in corrections for the next edition of this
book, currently 1st edition.
My Web site account contains the frameworks, and Awk and Perl programs presented in
these two books. To download these, go to https:// md-dsl.fr/c-arduino-programming (a little over 1.5
megabytes).
You will also find notes and acknowledgements as to events concerning these two books in my
Web site https:/http;// md-dsl.fr.

A note on the book's source code | 17

This page intentionally left blank

18 | Chapter 1 - Arduino and C++

About the author

T he author, Michèle Delsol, born in France, educated in the USA (MIT - B.Sc., Sc.D.),
now retired and living in France, has worked in industrial firms in South America,
the USA, and France. For the last 25 years of her career, she was CEO and CTO of the

company she created. As CTO she gained experience working with Fortran, Forth, Lisp, Java,
JavaScript, Visual Basic, PHP, HTML, and C++.
Not shying from rolling up her sleeves, she is practical and dives into hands-on work. Her
passion for flying led her to build and fly her own airplane (RV8). She also claims some artistic
capabilities (the warthog and marmoset on the covers of this two-book tandem are hers), did
some acting (theater), and is now an enthusiastic beekeeper.
Her most recent electronics endeavor is an Arduino-based beehive weighing system to help monitor
her bees' wellbeing (full details in the author's book Defensive C++ Arduino Programming - see
Bibliography - C/C++ programming (page 263). It began as a back of the envelop idea which grew
into a full-fledged system. As the project progressed, from proof of concept of the individual
components to a comprehensive integrated system, the application grew to more than 35
files (15,000 lines of code). Her early development was fairly undisciplined and incremental,
which led her to too much time debugging - what was initially an enjoyable pastime became
a gruesome burden. She consequently stepped back and researched why programmers make
mistakes. She found that she needed to adopt good programming practices and use better tools.
It brought her to switch to AtmelStudio (later to Visual Studio with Visual Micro) in lieu of
the Arduino IDE, to extensively review C++, to create frameworks to handle specific tasks, to
relearn adequate Awk and Perl to extract documentation from the source files, to learn regular
expressions, and to undertake other useful programming chores.
This experience led her to write extensive notes on the material she covered to keep track
of things as literature and the Internet teemed with too much material, most of which was
unprofessional, verbose, and did not address the question posed directly. Ask a simple question,
get long complicated responses. These notes gradually morphed into two books: Pragmatic
C++ Arduino Programming, a reference work to help already C++ savvy Arduino programmers
avoid the many gotchas C++ can throw at them, and Defensive C++ Arduino Programming which
presents C++ tools and frameworks to improve programmer productivity to write efficient,
robust, maintainable, and compact Arduino applications.
Her Arduino-based beehive weighing system is not quite finished. Future work would focus on
transferring her project to an Open Source Software team, on redesigning the PCB for SMT
technology, on implementing alternate communications to handle remote areas where GSM
is not available, on developing Web and smartphone based user-friendly interfaces, and more.
Whether these will be undertaken remains to be seen since she has other projects she intends
to work on. Amongst the many ideas that float in her mind, a device to detect Asian wasps
hovering in front of the beehives. She also plans to interpret a colony's activities via the sound
they make. These projects are a tall order - they imply learning and implementing digital signal
processing, digital image processing, and AI. These should keep her busy for years to come.
Needless to say, she is never bored. Aside from the shared benefits that beekeepers might gain
from her hard-won endeavors, her ongoing satisfaction lies in the challenge and the doing.

19

This page intentionally left blank

20 | Chapter 2 - Arduino IDE

 Index table | 21

Index table
Symbols
++ See Prefix/postfix operators (++/--)
+ plus sign

=- instead of -= or =+ instead of += - gotchas 221
+ plus symbol

+a - unary plus (affirm positive) 65
a+b - add 65

<, <=, >, >= operators
Less than, less than or equal with, greater than,

greater than or equal with 65
<< and >> bit shifts operators

Bit shifts left and bit shifts right 65, 70
< left chevron symbol

<<=, >>= cumulative bit shift left, bit shift right
 65

= equal sign
+=, -=, *=, /=, %= operators - cumulative add/

subtract, multiply/divide, modulo 65
==, != operators - equal with, not equal with 65
=- instead of -= or =+ instead of += - gotchas 221

> right chevron symbol
<<=, >>= cumulative bit shift left, bit shift right

 65
~ tilde

~ bit NOT operator reverses bits 65, 70
! ~ negation , also used in bitwise not 65

3rd generation programming languages See Pro-
gramming languages

255 values
Noise (255 values) in transmission filter out 284
Use 255 base instead of 8-bit 256 base 284

& ampersand
&, ^, | bit-level AND, XOR, OR 65
&=, ^=, |= bit-level logical self comparisons 65
&, |, ^, ~ bit-level AND, OR, XOR, NOT 70
&&, ||, ^ logical operators AND, OR 65
&a - address of variable a 113
& instead of && and | instead of || or vice 221

/*...*/ and //... See Comments
\ backslash symbol

\" double quotes escaped 52
\n, \t, \f (new line, tab, form) - escape sequences

 52
Write macro on several physical lines 171

__brkval and __flp
System vars define fragmented memory 83, 164

(cast) operator
cast such as (uint8_t) myVal 65

: (colon uses)
>:0 - start at byte boundary - bitfields 94
:1 - pad 1 bit - bitfields 94
Bitfield size such as int myBitfield : 3; 69
Colon : used in 'for (int valItem : floatArray)' 75
? : - conditional if true/false 65
Conditional operator ? : contains colon : 69
Enumeration size specifier : uint8_t {...}; 69
for (index : array) {...} index is control parameter

 75
Identifies a label statement 76
Inheritance derivedClass : public baseClass 69
Initializer list myClass() : val1(0), val2(10) 69
: used to define enum item type 97

.cpp files (code files) See Header files (.h) and code
files (.cpp, .ino)

#define, #undef See Macros (#define)
:: (double colon uses)

namespace scope :: resolves name clashes 38
::new - global new 163

#error See Macros (#error)
! exclamation mark

==, != operators - equal with, not equal with 65
! ~ negation , also used in bitwise not 65

-f flags (compiler options)
-flto flag (link time optimization) 25
-fno-exceptions flag in platform.txt 147
-fno-rtti and -frtti flags (variable type info) Arduino

unsupported 224
-fpermissive required by Arduino 25, 202, 234

__FILE__
Current source file 83, 182
Full path consumes too much memory 191

__FILE__, __FUNCTION__, __LINE__
System variables 83

__flp and __brkval
System vars define fragmented memory 83, 164

/ forward slash
+=, -=, *=, /=, %= operators - cumulative add/

subtract, multiply/divide, modulo 65
/ forward slash symbol

*, /, % operators - multiply, divide, modulo 65
-fpermissive flag (compiler leniency) See Permissive

flag (compiler leniency)
__func__ (deprecated) See __FUNCTION__

22 | Index table
__FUNCTION__

Compatible with F() macro 188
Current function 83, 182

.hex (image) See Executable file

.h files (header files) See Header files (.h) and code
files (.cpp, .ino)

#ifdef...#elif...#else...#endif See Macros (#ifdef...#e-
lif...#else...#endif)

#if defined (...) See Macros (#if defined (...))
#ifndef...#endif See Macros (#ifndef...#endif)
#include See Macros (#include header file)
.ino files (sketches)

Arduino name for C++ entry file 103
Header files (.h) and code files (.cpp, .ino) 103
.ino files are ordinary C++ files 40

__LINE__
Current line no. in source file 182
Current source line 182

#, ##, /**/ macro operators
Macro stringizing, concatenation, separation 177

- minus sign
+=, -=, *=, /=, %= operators - cumulative add/

subtract, multiply/divide, modulo 65
=- instead of -= or =+ instead of += - gotchas 221

- minus symbol
a - b - subtract 65
-a - unary minus (affirm negative) 65

, operator
Sequence expressions (comma operator) 65

? : operator
Conditional if true/false operator 65

*, & operators
Dereference a pointer or define one, address of a

variable 65
& operator See Address '&' operator, reference type

qualifier, bit level AND operator
{...} operator See Curly braces
() parentheses

() parentheses defines function - int myFunc() 57
() parentheses groups expressions 65

% percentage symbol
*, /, % operators - multiply, divide, modulo 65

#pragma See Macros (#pragma)
& reference qualifier See Reference qualifier
-- See Prefix/postfix operators (++/--)
[] square brackets

Array [] type qualifier - int myArray[50] 56
Overloaded index [] operator SafeArray class 276

[] square brackets symbol
Array index operator - myArray[2] 94

Array index [] operator overloading 146
Array [] type qualifier - int myArray 57, 94
[](){...} - lambda function operator 65
throw(error) in overloaded index[] operator 148

* star symbol
* defines a pointer 56
*myPointer++ - is it (*myPointer)++ or

*(myPointer++)? 225
*, /, % operators - multiply, divide, modulo 65

* symbol
+=, -=, *=, /=, %= operators - cumulative add/

subtract, multiply/divide, modulo 65
% symbol

+=, -=, *=, /=, %= operators - cumulative add/
subtract, multiply/divide, modulo 65

#undef See Macros (#define, #undef)

A
abort

Error handling 145
Abstract classes See Virtual & pure virtual functions
Address '&' operator

Address of as in '&a' 113
Advanced mechanisms

Complex numbers 150
Exception handling (C and C++) 77, 147
Lambda functions [](){...} 65
Templates 125

Aliases (uint8_t, etc.)
Types (built-in) 54

Amateurism
Doing a job without the required skills 209
Too much debugging time 257

Analog pins See Arduino specific functions
AND & and && See bit-level and logical operators
Arduino bit functions (simplify programming)

bitClear, bitSet, bitRead, bitWrite, bit(pos) 89
bitRead(number, bit) to get a bit's value 71
Divide by 256 for MSB or modulo 256 for LSB 89

Arduino Builder See Code::Blocks
Arduino configuration file See platform.txt
Arduino development tools See Development tools
Arduino editor

Adds 'main' behind the scenes 40, 44
Arduino editor collapses curly braces well 106
Auto-indenting, code collapsing not supported 22
Error message lost in reams of output 200, 254
Good C++ editor but could be better 21, 197
#ifdef auto-indent/code collapse unsupported 218
See Arduino IDE bugs 197

Arduino IDE

 Index table | 23
All-in-one free user-friendly tool 5, 19
Arduino boards based on Atmel 8-bit chips 11
Arduino IDE's messages are not always clear 249
Bit-level coding 71
Complex numbers not supported by Arduino 151
Experiment with arrays to find code size 282
Preprocessor, powerful text processing tool 20
See Arduino IDE tool chain 19
Warnings on 224

Arduino IDE alternatives
AtmelStudio, Visual Studio, Visual Micro, VS code,

PlatformIO, Code::Blocks 32
Arduino IDE bugs

Adds unwanted curly brace 220, 244
Arduino's segmentation fault (linker problem)

pushed me to migrate to AtmelStudio 197, 199
Error messages and warnings 198
Error reporting top down, errors out of sight 254
if/else open curly brace position problem 22
No alert on externally modified file 198
Sketch's serial port gotcha 198, 203, 204
Stray '\357' injected by AtmelStudio 197
Stray '\' in macro definition 197
Suddenly stops working (java error) 200
Undo - ctrl-Z sabotages your work 197, 198
Upload error need recompile 197, 200
Will not alert you on externally modified file 204

Arduino IDE (build)
Compile/upload uses bootloader to upload

program 27
Arduino IDE tool chain

Arduino C++ editor 20
avrdude (uploader) 21
AVRlibC Atmel 8-bit specific library 99
bootloader & program stored in flash memory 21
Breadboard to prototype board to final PCB 5
Compiler 20
Debugging (hardware-based) 21, 29
GNU C++ tool chain and avrdude 99
Linker - creates program by assembling .o files 20
make utility (builder utility) 21, 26
Proof of concept - work on breadboards 5
Python and WiPy 16
Serial terminal 21, 29
Several tools behind Arduino IDE interface 19

Arduino memory pools
Bottom of RAM for global, static, system data 154
PROGMEM for read-only variables 98, 153, 154
RAM is volatile, flash and EEPROM remain 154
Sizes of memory pools table 154
Three memory pools: RAM, EEPROM, flash 154

Arduino specific functions
Analog read and analog write 84

Arduino bit functions 89
Arduino port functions to manage ports 84
Digital and analog I/O functions 83
Digital vs analog ports 11
Interrupts 83
Microcontroller specific functions 83
millis(), micros(), delay(), timers 83, 85
Nomenclature: port for boards, pin for chip 84
Port configuration digital/analog input/output 84
PWM ports 84
Random numbers 83
Serial and stream communications 83
Signal functions 83
Some boards can put out analog voltages, not

UNO nor MEGA2560 84
Use Aref port as voltage reference in analog read/

write 84
Voltage by PWM pulse width modulation 84

Arithmetic on array items See Ordinary arithmetic
vs. pointer arithmetic

Arithmetic operators
+, -, *, /, % - add, subtract, multiply, divide, modulo

 65
Arrays and indices

Array of pointers 82
Array qualifier [] differs from pointer * 57
Arrays auto-sized by initializations 102, 123
Arrays group identical items 151
Arrays group identically typed items 94
Array type qualifier [], index operator [] 66, 82, 94
Associative containers not supported 151
C++ building-blocks 50
Memory corruption due to runaway index 245
Nested array initializations 95, 124
Number of items in array 70, 82
One- and three-dimensional arrays 95
Overloaded index operator[] 101, 129, 146
SafeArray class protects from bad index 238
Size of array passed as function parameter 220
sizeof operator used on array 70
Strings in array vs. corresponding enum list 235
Type qualifier [] converts variable into an array 79
Use subscript (index) to get value of item 83, 95
Zero-based indexing forgotten 220

Artificial intelligence See ChatGPT
Assembler See Programming languages
Assignment = as initializer See Initialization
Associative containers See Arrays and indices
Associativity See Precedence and associativity
ATmega328P-Xmini, ATmega256RFR2, Atmel ICE

Debugging (hardware-based) 29
ATmega microcontroller interrupts

24 | Index table
Atmega328P has 2, Atmega2560 has 6 86

AtmelStudio
Advanced code management features 32
Alerts on externally modified file 204
Arduino IDE interoperability 5, 32
Arduino's segmentation fault pushed me to

migrate to AtmelStudio 199
AtmelStudio has a very good editor 32, 282
AtmelStudio segmentation faults are benign 200
Code navigation features 32
Collapses and indents #ifdef, not Arduino 216
Color syntax 22
Compiler options 25
Defensive C++ Arduino Programming 32
Experiment with arrays to find code size 282
Free download from Microchip Web site 32
GNU C++ tool chain and avrdude 32, 99
Importing Arduino projects is hassle free 5, 32
Indents #ifdef, not Arduino 218
Manage upload process 27
Microsoft style environment 32
Serial terminal 29
Stray '\357' injected by AtmelStudio 201
Supports Arduino hardware-based debug 29, 32
Supports name completion 22
User-friendly error reporting 32

AUTO_CHAR_ARRAY
Adds extra null byte to terminate string 183
Use macro to not forget end null 240
Zero-based indexing forgotten 240

Automatic memory allocations See Functions and
variables

auto type qualifier
Sets variable's type automatically 55, 79
Type checking 219
Use auto to set type and initialize 58

avrdude
Arduino compile/upload uses avrdude to send .hex

file to board, bootloader uploads it 27
Arduino Uno used as ISP via bootloader 27, 28
bootloader, located at address 0, transfers control

to program or uploads new program 27, 28
GNU C++ compiler/linker create .hex file 27
Program resides in flash memory (.hex file) 27
Reset sends first program instruction to register for

program execution 28
Uploading a program requires an in-system

programmer (ISP); bootloader does the job 27
avrdude (uploader)

Arduino IDE (tool chain) 21
bootloader resides in flash memory, uploads

program into the microcontroller 27, 185
Upload error need recompile 201

AVRLibC See Libraries

B
bad_alloc, bad_cast

Exception class events 149
Base class See class (base)
Basic types See Types (basic)
Beehive weighing system

Or how I learned from my mistakes 207
Preface xix

Binary decision trees
if (condition) {...} 74

Binary numbers See Integers, floats, etc.
bitClear, bitSet, bitRead, bitWrite, bit(pos)

Arduino bit functions 89
Bitfields

:0; start at byte boundary and :1; pad 1 bit 94
Byte and word boundary 94
class and struct 91
enums simplify access to bitfields 93
Pack small numbers in bitfields 93

Bit-level coding
Arduino bit functions simplify programming 71
Bit operators 67
Bit shift precedence ignored bad result 220, 241
Date and time packed data 132
GET_BIT_VALUE_POS(data, shift) 71

Bit-level operators
<< and >> bit shifts operators 70
Arduino bit functions 89
Bit-comparison, inversion, and shift (operators) 70
Manipulate individual bits in a byte 70
Read/set bits via AND, XOR, OR (&, ^, |) 65, 70
Store/set bit values - three methods 242

Bit masks
Bitfield date/time access 133
Read/set bits via masks 70

Bit notation
8-bit representation of 1 is B00000001 (right to

left) 242
Bit display is zero-based 71
Serial.print BIN (binary) print format 88

Bjarne Stroustrup
Operator associativity not defined 68
PhD thesis 8
The C++ Programming Language book 150
Where the ++ in C++ comes from 9

Blynk for Arduino See Visual development
Book's Web site (md-dsl.fr)

Events concerning book blogged in md-dsl.fr 291
For comments and info, please send email to

cppArduino@md-dsl.fr 291

 Index table | 25
Go to https://md-dsl.fr/c-arduino-programming for

a link to download most of the code in the two
books 291

bootloader See avrdude
Boot See Powerup
Bottom of available RAM See Memory (heap)
Bottom of physical RAM See Arduino memory pools
Bottom of stack See Stack and stack frames
Bottom-up See Top-down programming
Breadboard See Arduino IDE
Builder utility See Arduino IDE tool chain's make

utility
Byte boundary See Bitfields

C
C++ building-blocks

Arrays and indices 50
C++ arrays are zero based 41, 82
class and struct 50
Code-blocks defined inside curly braces 72
Comments /*...*/ and //... 49
Components used to build a program 49
Control flow statements 50
.cpp files (code files) 101
Create derived types via type qualifiers 49
Data packing (bit-level) 50
Derived type from type qualifier on basic type 56
Enumerations (enum) 50
Expression evaluation 49
Functions and variables 50
Header files (.h) and code files (.cpp, .ino) 101
.ino files (sketches) 101
Lambda functions can simplify programming 143
Libraries contain most of what you'll need 51
Operators (logical and bit-level) 49
PROGMEM framework 98
Statements as collection of expressions 49
Structure declarations not nested as in C 45
Templates - function/classe blueprint 102
Types - built-in and user defined 49
Unions 50
Use PROGMEM for read-only variables 50
What one needs to master 2

C++ core guide lines
Do's and don'ts in C++ xix

C++ enhancements to C
bool is C++ 39
C++ compiler triggers errors on C programs 38
C++ enables creating user-defined types 17
C++ is an enhanced C yet there are differences 38
C and C++ programming almost identical 44
C declarations in top of a file or function 39

C functions must have different names 120
Creating structs in C and C++ differ 39
Enumerations (enum) 39
extern "C" to specify legacy C code 46
extern "C" {...} triggers explicit C compilation 39
malloc is a function, new is a C++ operator 39
Name mangling differentiates functions 38, 120
namespace 38

C++ features not supported by Arduino
Associative containers 151
Exception handling (C++) 150
I/O streams 151
Multitasking and concurrency 151
Regular expressions (regex) 151
Standard Library and Standard C Library 150

C++ mechanics
Array initialization 102
C++ arrays are zero based 41, 82
C++ has strong typing 41
C++ is case sensitive 41
C vs. C++ 44
Exception handling (C and C++) 44
Functions and variables 102
Functions do not necessarily return a value 42
Manipulate data addresses directly 41, 81
Name mangling differentiates functions 120
Naming functions, variables, macros 110
Numeric types (compatible) 102
Object-oriented programming (top-down) 15, 40
Operator overloading 101, 129
Ordinary arithmetic vs. pointer arithmetic 102
Param passing: value, address, reference 42, 102
Polymorphism 102
Precedence and associativity 101
Programs are multi-module 40, 41, 101
Put declarations anywhere before use 39
Rules to assemble C++'s components 40, 101
Scope (visibility) 101
Strings 42, 102
Type checking 102
Types (user-defined) 43
What one needs to master 2

C++ programming
Akin to walking through a minefield 209
Bjarne Stroustrup's The C++ Programming

Language book 10
C++ is an enhanced C 38
Compromise between programming ease and

execution speed and compactness 9, 12
C with user-defined types 38
Programming languages 12
Top-down programming 17
Which chip/language combination? 14

26 | Index table
C++ short history

Bjarne Stroustrup where ++ in C++ comes from 9
C's origins (multics then unix) make it unique 7
C with classes (C++) for top-down programming 8
Good code needs to be simple 9
How one thinks (top-down) 8
Inheritance 9
Multitasking and concurrency 9
User-defined types basis for object-oriented

programming 8
C and C++ numeric types

Table 54
Cascading values

Data sequence and #define 174
catch See Exception handling (C and C++)
C# (C-sharp)

Microsoft's C++ equivalent 10
char constants See Constants: character, string, and

numeric
char string and PROGMEM See Strings
char type See Types (basic and derived types)
ChatGPT

Alternative codding solutions with ChatGPT 268
Artificial intelligence search tool 36
ChatGPT writes temp/humidity program 36
Generates code from simple design requests 36
Kick start you application by asking ChatGPT 268
One more tool to help you write better code 268

C language
Procedural programming 16

class and struct
Bitfields 91
C++ building-blocks 50
class and struct almost identical, use struct for

light weight data aggregates 91
class and struct create user-defined types 56, 91
class array initialization 102
const functions can modify mutable variables 61
Constructors and destructors 91
Data encapsulation key to top-down programming

 38, 89, 123
Inheritance 91, 134
private/public control class items access 91, 135

class (base and derived)
Base class stores common properties, derived class

stores specific properties 136
Cycle through derived classes 137
Derived class constructor initializes base class 135
Derived class redefines base class virtual functions

 120, 134, 136
Inheritance defines parent/child relationship 134
Transparently cycle derived classes 138

Virtual & pure virtual functions 136
class (templates) See Templates (class)
Code-blocks

Classes, functions, structures, program control
flow, etc. - program units do work (statements
enclosed in curly braces) 72

Nameless code-blocks improves readability, saves
RAM 72

Code::Blocks IDE
Arduino Builder (freematics): compile/run Arduino

projects 34
Seems promising, but unable to use it as alter-

native for Arduino development 34
Code files See Header files (.h) and code files (.cpp,

.ino)
Code folding See Curly braces
Cognitive dissonance and EGO

Ex: bitfields error psychologically induced 270
One can be one's worst enemy 260
Psychological factors 258, 271

Collapse items See Curly braces
Colon uses See beginning index table
Color syntax

Arduino editor and AtmelStudio 22
Comments

C and C++ comments (/*...*/ and //) 49, 51
Careful with C++ comments '//' in macros 171
Insert comments when writing code 51

Communications See Serial Communications
Compatible numeric types See Types (equivalent

numeric types)
Compiler

Arduino IDE (tool chain) 20
Converts .cpp to machine code .o 25
Optimizes generated machine code 26
#pragma macro sets compiler directives 182
Semantics (vocabulary) and grammar (rules) 25

Compiler bug?
Cannot where curly braces inbalance 245
Compiler points far from error's position 218
float to uint32_t problem using pow() 238
Misleading message from enum declaration 255
No code after label error 236, 251
No error message on missing return 111, 235
No warning on redefining existing variable 227
No warnings on mixed compatible types 121
Omitting () in function call undetected 220, 232
Problem not detected because error is legal 218
Unable to find a workaround for the Arduino

segmentation fault linker problem 199
Compiler bug See Error messages and warnings

 Index table | 27
Compiler optimizations

Circumvents weaknesses in your code 225
Compiler optimizes your code 225
volatile type qualifier no optimizations 63

Compiler options
Debugging and release modes 25
-flto flag (link time optimization) 25
-fno-rtti flag to activate the typeid operator 224
-fpermissive flag (compiler leniency) 25
Optimization level 25
Tweak the compiler to meet your needs 25
Verbose produces extensive warnings 25

Complex numbers
Arduino missing complex numbers class 150
Get from GitHub or create your own complex

numbers class (easy) 150
Operator overload to add complex numbers 130

Concatenation operator ##
Macro concatenates items 178

Concurrency See Multitasking and concurrency
Conditional if true/false operator

? : operator 65
Conditional inclusions See Macros (#ifdef...#endif)
const and mutable

const before/after pointer * modifier 61, 62
const_cast to modify variable declared const 61
const functions and variables protect data 61, 63
Functions and variables 61, 81
mutable prevents/allows makes data modifiable

 63
register type qualifier (deprecated) applied to

variables which impact speed 63, 81
volatile type qualifier no optimizations 63, 81

Constants (character, string, numeric)
C++ provides three types of constants 49
char constant is 16 bits in C, 8 bits in C++ 46, 52
Decimal value 52
Escape sequences 52
Global, static, system data bottom RAM 155
Literal string constants 52
Numbers and literal string constants 52

Constructors
class and struct 91
Constructor initializes; destructor wraps up

 39, 79, 92, 123
Constructors create instances of structs and

classes, may take parameters, no return 92
Constructor's name same as class's name 92
Copy constructors penalize runtime size 118
Member initialization list 135
See destructors 92
See SafeArray class example 277

WolfPack template class example 127
Containers See Arrays and indices
Contiguous heap See Memory (heap contiguous)
Control flow expressions

C++ building-blocks 50
Control flow constructs handle program logic 73
do {...} while (condition) 74
Exception handling (C - setjmp/longjmp) 74
for (each) {...} 74
for (iterate) {...} 73
goto label 74
if (condition) {...} 73
Scope (visibility) 106
Statements (if, while, etc.) 72
switch (value) {...} 74
try (...) exception handling (C++) 73
What defines C++ 18
while (condition) {...} 74

C programming
3rd generation languages 10

Cryptic messages See Error messages and warnings
ctrl-Z (undo) bug See Arduino IDE bugs
cumulative bit shifts operators

<<=, >>= cumulative bit shift left, bit shift right
 65

Curly braces
Arduino editor adds unwanted curly braces 244
Collapse code improve code readability 106
Comment closing curly brace 243
Compiler cannot find error location 243, 245
Curly brace instead of semicolon not done 245
Curly braces {...} as initializer 79
Curly braces define local scope 104
Encapsulate function body in curly braces 110
Readability is enhanced via curly braces 106
Serial does not name type bad curly braces 244
Unbalanced curly braces 244

C vs. C++ See Syntax differences between C and C++
Cycling through derived classes See Virtual & pure

virtual functions, abstract classes

D
Data corruption See Memory corruption
Data packing

Bit level - Use individual bits to pack data 50, 129
Date and time packed data table 133
Group date/time inside a few bytes 132, 133
Group small numbers in bytes via bitfields 131
Table of data packing into bitfields 132

Data storage
Data pointer's value should not be zero 227
Memory allocations must be monitored 157

28 | Index table
unions enable memory sharing 96
Ways to store data: automatic (function variable),

global, static, heap, stack, PROGMEM 156
Debugging (general)

Amateurism causes extra debugging work 257
Defensive C++ Arduino Programming 29
Devil is in the details 229
Why does one make mistakes? 208

Debugging (hardware-based)
Arduino IDE 1.8.19 does not support hardware-

based debugging, V 2.0 does 21, 29
ATmega328P-Xmini, ATmega256RF, Atmel ICE 29
AtmelStudio supports hardware-based debugging

 29, 32
PlatformIO does not support Arduino hardware-

based debug 34
PlatformIO supports ESP32 hardware-based

debugging, not Arduino 29
Debugging (print-based)

Hardware- and print-based debugging comple-
mentary 29

Relies on extensive use of macros 170
Selective code inclusion via #ifdef macros 210

Declarations
C declarations - top of a file or function,

C++ anywhere before being used 39
Declaration examples 79
Identifier (variable must have a name) 78
Tells the compiler how to call a function and

implement it using its stack frame 78
Typedef synonym for complex declaration 78
Type qualifiers in multivariable declarations must

be repeated 223
Types (derived and user-defined) 78
void functions 79

Declarations vs. implementations See Header files
(.h) vs. code files (.cpp, .ino)

Decrement/increment --/++ See Prefix/postfix oper-
ators

Default function return type See Functions and
variables

Defensive C++ Arduino Programming book
AtmelStudio 32
Debugging (hardware-based) 29
Exception handling (C and C++) 78
Frameworks 210
Perl and Awk extensively covered 47
Pseudo-exception handling framework 280
Regular expressions (regex) covered 151
Tools and procedures to optimize programming 1

delay() See Timers
delete See new and malloc

Delphi See Programming languages
Dereferencing a pointer

Dereferencing a pointer has low precedence 219
Dereferencing * function argument bad 226
*myPointer++ Is it (*myPointer)++ or

*(myPointer++)? 225
Parentheses ensure order of evaluation 225
Pass by address 114
Pointer arithmetic, careful with precedence 225
Pointer wrongly passed as parameter 219

Derived class See class (derived)
Derived types See Types (derived)
Destructors

Does wrap-up chores, releases memory 39
No parameters and no return value 92
Object's destructor does wrap-up chores 92
See constructors 92

Development tools
Arduino IDE 19
Artificial intelligence (ChatGPT) 35
AtmelStudio 32
Code::Blocks 34
MPLAB 34
PlatformIO 33
Visual development 35
Visual Micro for AtmelStudio (MicrochipStudio) 32
Visual Micro for Visual Studio 33
Visual Studio 33
VS Code (Visual Studio Code) 33

Development tools See Artificial Intelligence:
ChatGPT

Development tools See Visual development: Visuali-
no, Scratch, Blynk

Devices, sensors, hardware support
Which chip/language combination? 15

Digital and analog I/O functions See Arduino specif-
ic functions

Digital pins See Arduino specific functions
DOS box

Awk, Perl, grep, sed, avrdude 204
Command line apps need text interface 204
Windows command processor 204

Double colon uses See :: (double colon uses) - be-
ginning index table

do {...} while (condition)
Control flow statements 74
Iterates at least once 76

E
EEPROM

eeprom_write_block and eeprom_read_
block -store/retrieve data from EEPROM 168

 Index table | 29
Flash memory 185
Non-volatile memory 154
Programmer can use EEPROM to store read-write

variables permanently after power-off 154, 168
EGO See Cognitive dissonance and EGO
Encapsulate data and functions

class and struct 38, 91
End null See Strings
Enumerations (enum)

C++ building-blocks 50
class keyword used as enum scope qualifier 97
Define low/high enum list boundaries 97
enum EColor example 97
Instead of #define sequence, use enums 97
List of symbolic constants each with a value 97
Simplify access to bitfields 93
static_cast assigns arithmetic value to enum 98
Symbolic numeric constants interchangeable 97
: used as enum item type 97
Use symbolic enums to index into arrays 95

Equivalent numeric types See Types (equivalent
numeric types)

Error handling
abort 145
Cascade back to some predefined location (C and

C++ exception handling) 145, 147
Decide what to do next 145
Dedicated error handling function 146
Developing logic differs from handling errors 145
Good programming practices 47
goto label 76
Issue warning, continue with default 145
Never assume anything 129, 145
Provide info on the nature of an event 145
Use setjmp/longjmp (exception handling) 145

Error messages and warnings
Arduino IDE bugs 198
Bad enum declaration error message 255
Cryptic message following enum error 255
Error messages can be long and cryptic 249
Error reporting top down, errors out of sight 254
Expected ';' before '{' - initializer left in 249
Expected ';' before '{' - initializer left in 252
Expected initializer before 'xyz' no ';' 249
Expected primary expression before 'char Foo(10,

char* msg);' 250
Expected primary expression before '}' - label

gotcha 251
Expected unqualified-id before '{' token - missing

first '\' in macro definition 250
Inaccessible member base class not public 255
Invalid char(*)[4] to uint16_t 201
Macro undefined - no parameters when called 251

Missing backslash: no error, no warning 213
Missing closing far from error's location 243
No code after label error 220, 236
No error message on missing return 111
No warning on redefining variable 227
Stray '\357' injected by AtmelStudio 201
Upload error need recompile 201

Escape sequences
Constants - character, string, and numeric 52
\" double quotes escaped 52
\n, \t, \f (new line, tab, form feed) 52

ESP32
PlatformIO 34
Which chip/language combination? 14

Event registration
Error handling 145

Exception class events
bad_alloc, bad_cast, out_of_range, range_error,

overflow_error, underflow_error 149
Exception handling (C and C++)

C++ exception unsupported by Arduino 147, 150
Control flow statements 74
Defensive C++ Arduino Programming 78, 280
Do extensive error checking 147
Error context defined by jmpbuf 78
Error handling 145, 146, 147
Example code 77
Exception class 149
longjmp triggers roll back to setjmp 77, 147
noexecpt specifies no exception thrown 149
Replaces C++ exception handling 73
SafeArray class does try/longjmp 146, 279
throw added as C++ exception handling 146
throw called by overloaded array [] operator 148
throw (errorID) gets caught by catch 146, 147
throw operator in C++ exception handling 65
throw's errorID identifies individual throws 147
throw used in SafeArray class 279
try/throw/catch 73
Use setjmp/longjmp instead of C++ exception

handling 149, 279
Executable file (aka program)

bootloader resides in flash memory, uploads
program into the microcontroller 27

Linker assembles .o files into program 26
Program stored in flash memory 185

Expression evaluation
C++ building-blocks 49
Gotchas (C++) 67, 101
Overflow/underflow in expression evaluation 67
Precedence and associativity 101

extern "C" {...} See C++ enhancements to C

30 | Index table
F
Flash memory

Non-volatile memory 154
RAM use with & without the F() macro 189
Save RAM with PROGMEM to store read-only data

in flash memory 98
Sketch uses 'nnnn' bytes 157
Used to store bootloader, program (executable

file), and PROGMEM variables 154, 185
Flash, RAM, and EEPROM sizes

Table memory pool sizes 154
Float numbers See ints, floats, octal, hexadecimal,

binary
F() macro

__FILE__ and __FUNCTION__ 188
Macro's mem requirements as program runs 188
PSTR() macro for read-only variables 189
Save RAM on Serial.prints PROGMEM 155, 188, 191

for (each) {...}
Control flow statements 74
Cycle through array, iteration is automatic 75

for (iterate) {...}
Control flow statements 74
for to while transformation 75
Iteration controlled by an index 73

Fragmented heap See Memory (heap fragmented)
Frameworks See Book's Web site to download
FreeList

List of fragmented memory holes 165
Freematics.com See Code::Blocks
free See new and malloc
Function ()

Type qualifier transforms variable into function 79
Function pointers

Function pointer naming convention 140
Typedef 140
When to create function pointers 141

Functions and variables
Auto allocation variables in stack frame 82, 155
C++ building-blocks 50
class and struct 91
Compiler removes intermediate variables 42
const functions and variables 61, 81
Contiguous heap required for stack growth 227
Default function parameters 110
Default function return type is an int 241
Dereferenced pointer parameter wrong 112
Function calls via function pointers array 140
Function copies parameter in pass by value 111
Function () operator used to hold parameters 142
Function parameter int[] becomes int* 237
Function pointer example: PrintSurface 142

Functions operate on data 81, 109
Function stack frame at bottom of stack 111
Function stack frame bottom of stack 155, 167
Lambda functions [](){...} 80
mutable allows functions to modify variable 81
Name mangling differentiates functions 38, 120
namespace: use variables and functions with same

name from different libraries 144
Param passing: default value 110
Param passing: value, address, reference 112, 115
Pass a pointer and dereference 111
Passing array to function requires passing array

size for index validity checks 220, 237
Recursive functions 165
register type qualifier (deprecated) applied to

variables which impact speed 81
Runaway index damages system, heap, stack 160
Scope (visibility) 106
Specify return type otherwise function returns

int no error message 111, 241
static qualifier 80
strcpy, strcat, strlen, strcmp functions 42
Typedef FPtrVoid fpHelloWorld 141
Typedef is synonym for complex declaration 80
Validity checks on parameters passed 111
volatile type qualifier no optimizations 81

Function templates See Templates (function)

G
Generated code

avrdude uploads app into microcontroller 21
Compiler optimizes your code 26
Linker optimizes away unused items 192

GET_BIT_VALUE_POS(_data, _shift)
Bit-level coding macro 71

GitHub
Count for Arduino, RaspberryPi, ESP32 16

Glitches See Gotchas
Global and local scope

Global, static, system data in bottom of RAM 155
Statements not allowed in global scope 253
Store application wide data in global variable or

via allocations to a global array pointer 156
GNU C++ tool chain and avrdude

Arduino IDE (tool chain) 99
AtmelStudio 32, 99
GNU compiler uses AVRlibC Atmel library 99

Golden rules
Always monitor memory 48, 153, 158, 228
Beware of cognitive dissonance (EGO trap) 47
Check, Check, Check! 47
Do not reinvent the wheel 48
Encapsulate related data and functions 60

 Index table | 31
Exploit C++ features sparingly 47
In-line documentation is a necessity 47
Insert comments when writing code 51
KISS principle: or why complicate things 48
Know yourself - listen to your body 262
Never assume anything 47, 129
Never end a function without a return! 111
switch should have coded default 76
Think! 47, 267
Update your C++ skills (know your tools) 47, 48

Good and bad habits
Bad habits: easy - good habits: hard 261
Introspection and self-imposed questioning 261
Psychological factors 258

Good programming practices
Auto-indent systematically and check 209
Comment closing curly brace 243
Comment closing #endif with #ifdef 218
Decide on error handling methodology 47
Do not neglect program documentation 47
Encapsulate code in curly braces 106
Function pointer naming convention 140
Functions should contain explicit returns 235
Is your mental condition up to par 209
Macros improve readability and reduce errors 210
Make names meaningful 25, 110
Modularize the application 210
Prefix parameters with an underscore 79
Professionalize your work 46
Standardize code (names, formats, etc.) 46, 209
Use FREE and DELETE macros to release memory

and set pointer to zero 246
Verify that allocated pointers are nonzero 246

Go programming language
Supports concurrency (tasks run in parallel) 13

Gotchas (C++)
Arduino IDE adds unwanted curly brace 244
Auto-indent reveals unbalanced curly braces or

parentheses 220, 243, 244
auto typing gets you to lose track of variable's

type 224
Avoid mixing numeric types 221, 223
Bad dereferencing function parameter 219, 226
Bad enum declaration error message 255
C++ is a deceptively simple language 207, 218
C++ traps and pitfalls: classic errors 218
Call overloaded 'myFunction' is ambiguous 253
char strings in array concatenated by mistake 220
class's closing curly brace missing 255
Comma instead of semicolon bad 219, 231
Data sizes in expression do not match

 67, 101, 219, 224
Dereferencing a pointer has low precedence 219

Expected ';' before '{' - initializer left in 249, 252
Expected initializer before 'xyz' no ';' 249
Expected primary expression before 'char Foo(10,

char* msg);' 250
Expected primary expression before '}' - label

gotcha 220, 236, 251
First and last items of an array zero-based 220
float to uint32_t problem using pow() 220, 238
Forgot semicolon 249
Function masks variable in outer scope 219, 226
Glitches - often caused by bad pointers 219, 227
In =+ unary + interpreted instead of += 212
Inaccessible member base class not public

 134, 255
Incompatibility between function's defined and

called parameters 126
Initializer {0} left in leads to cryptic message 252
Invalid char(*)[4] to uint16_t 197, 201
Lack of a terminating null thrashes memory 240
Legal code yet programming error 207
Legal code yet programming error 218
*myPointer++ Is it (*myPointer)++ or

*(myPointer++)? 225
Omitting () in function call undetected

 219, 232, 243
One-line multivariable declarations: missing repeat

type qualifier 219, 223, 254
Parameter declaration char* msg left in when

calling function 250
Passing an array to a function requires passing

explicit array size for index validity checks 220
Pointer not set to zero after free/delete 229
Pointer used without assigning memory space

(phantom object) 228, 229
Pointer validity not checked 221, 227
Precedence and bit-level coding 220
Prefix/postfix operators ++/-- misunderstood 221
Return type does not match assignment 223
Runaway index corrupts memory 245
Semicolon not replaced with curly braces negligent

copy/paste 220, 245
Serial does not name a type error 244, 252
Signed/unsigned in expression do not match 223
sizeof operator on array misunderstood 70, 219
Specify function's return type otherwise function

returns int no error message 235, 236
Specify return type otherwise function returns

int no error message 79, 111, 220
Stack thrashes top of allocated memory 159, 227
Stray '\357' injected by AtmelStudio 201
Symptom when damaged section used 202
Trace indentations backwards to find curly braces

bug 243
Type checking leniency induced bugs 219

32 | Index table
Why does one make mistakes 207
Zero-based indexing forgotten 220

Gotchas (C++) See Error messages and warnings
Gotchas (C++ traps and pitfalls)

=- instead of -= or =+ instead of += 221
a = b instead of a == b or vice versa 221
"a" vs. 'a' double quotes instead of single 222
Do not to start number with 0 unless is octal

number such as 013 (decimal 11) 221
if...else badly constructed (dangling else) 222
& instead of &&, | instead of || or vice versa 221
Missing end of statement or one too many

semicolons 222
Gotchas (macros)

AtmelStudio color syntax detects macro bug 181
C++ comments in macros misleading 213
Commenting out part of a macro 210, 213
#define tokenization creates extra spaces 210, 212
#error gets you to look for macro definition

problem whereas the macro is fine 181
Expected unqualified-id before '{' token - missing

first '\' in macro definition 250
Forgot backslash in multiline macro 210, 213, 252
Functions called in macro generate side effects

 210, 214
Macro definition errors often undetected 210
Macro's simplicity can cause subtle errors 210
Macro undefined - no parameters when called 251
One too many backslashes in macro 210, 253
Operator precedence problem in macro 215
Semicolon in macro gotcha undetected 212
Stray '#' in program 212
Tokenization in #define creates extra spaces 212
Unbalanced #ifdef…#endif pairs 211
Unsatisfactory macro parameters isolation 211

Gotchas (macros) See Error messages and warnings
goto label

Control flow statements 74
Direct program transfers - a no-no 76
Error handling 76
Expected primary expression before '}' - label

gotcha 251
goto statement 73
Spaghetti code procedural coding nightmare 76

Grammar (rules)
Compiler 25
Semantics (vocabulary) 25

H
Hardware-based debugging See Debugging
Harvard architectures

Alternate is Von Neumann architecture 153
Atmel and most microcontrollers - data resides in

RAM but not program 153
Header files (.h) and code files (.cpp, .ino)

C++ mechanics 101
class and struct declarations 101
Compiler works on one source file at a time hence

the need for declarations (header files) 103
Declarations enable the compiler to verify correct

parameter passing 103, 104
Ensure header files top-down dependencies,

avoid interdependencies 104
#ifndef avoids repeat file inclusions 104, 176
.ino files are ordinary C++ files 40
.ino files (sketches - Arduino's C++ entry file) 103
Macros (#include header file) 24, 176
Program components declared in header files (.h),

defined in code files (.cpp, ino) 101, 103, 104
Heap (contiguous) See Memory (heap contiguous)
Heap (fragmented) See Memory (heap fragmented)
Heap See Memory allocations
Hello World

If you can create and run a small program, you can
do the same with a big one, see Kernighan and
Ritchie xix

Smallest C program 39
Hexadecimal numbers See integers, floats, octal,

hexadecimal, binary
Holes (memory) See Memory (heap fragmented)

I
if (condition) {...}

Binary decision trees 74
Control flow statements 74

Image (.hex file) See Executable file (aka program)
Implementations vs. declarations See Header files

(.h) vs. code files (.cpp, .ino)
Incremental vs. planned programming

Easy to type code without prior thinking 267
Incremental learning 268
The most difficult thing to do is think! 267

Increment/decrement ++/-- See Prefix/postfix oper-
ators

Index operator overloading See SafeArray class
Index See Arrays and indices
Inheritance

Base class initialization 135
Base class stores common properties, derived class

stores specific properties 135
class and struct 91, 134
Colon ':' in class definition defines inheritance 135
Defines parent/child relationship 134
Traverse array of distinct objects 138
Virtual and pure virtual functions, abstract classes

 Index table | 33
 136

Initializations
Assignment = as initializer 79
Constructor initializes; destructor wraps up

 39, 79, 92, 123
Curly braces {...} as initializer 79
Functions and variables 80
Nested array initializations 95
Parentheses (...) as initializer 79
Static class variables initialized in global scope 60
Use auto to set type and initialize 58

Inlining
#define macros resemble inline functions 170
Improve performance by inlining functions 142
What one needs to be aware of 129

Insidious bugs See Gotchas (C++ and macros)
int8_t, uint16_t, etc. See Aliases (uint8_t, etc.)
Integers, floats, octal, hexadecimal, binary

Binary numbers bit-level representation 53
float contains integer and decimal part, integers

do not have a decimal part 52
Hexadecimal numbers start with 0x as in 0xB, octal

numbers with 0 as in 013 (decimal 11) 53, 221
Interoperability

AtmelStudio/Arduino IDE interoperability 5, 32
Interrupts ISR (Interrupt Service Routine)

Attach interrupts and detach interrupts 86
digitalPinToInterrupt --> port interrupt 87
Internal (software) and external (hardware) inter-

rupts 83, 86
ISR pauses current execution for critical work 86
Port number obtained via INTx 86
Timers 86
Uno has 2 hardware interrupts, Mega has 6 86

J
Java

Interpreted OOP language 13

K
Kernighan and Ritchie

Hello World - first C program you wrote xix
The C Programming Language: must read 39

Keywords
Not usable as variable names 25
Statements (return, break, etc.) 73

KISS principle (keep it simple stupid) See Golden
rules and Psychological factors

L
Lambda functions [](){...}

Creates function on the fly 79
Ex: auto myLambda = [](char _abc) {...} 143

[] referred to as capture, accesses enclosing
function's local variables 144

What one needs to be aware of 129
Landing point See Exception handling (C and C++)
Least significant byte (LSB) See Arduino bit func-

tions
Libraries

Arduino distribution includes String class 51
AVRlibc contains most of C Library 51, 99
Previous libraries: Standard C Library, Standard

C++ Library, STL (Standard Template Library) 99
Standard libraries not supported by Arduino 150
Standard Library extensively documented in The

C++ Programming Language 98
Standard Library includes previous libraries 99
STL (Standard Template Library) 99, 125

Linker
Arduino IDE (tool chain) 20
Assembles .o files into program 26, 101
Linker optimizes away unused items 26
Linker removes unused items 282
Unable to find a workaround for the Arduino

segmentation fault linker problem 27, 199
Unreferenced symbols is undefined variable 26

Local scope See Global and local scope
Logical operators

&&, ||, ^ AND, OR operators 66
! ~ negation , also used in bitwise not 65

longjmp See Exception handling (C and C++)
loop See setup and loop
LSB (least significant byte) See Arduino bit func-

tions

M
Machine code

bootloader, program stored in flash memory 153
Compiler converts .cpp to machine code .o 25
Instructions taken from flash memory put into

registers one at a time 153
Macros

C++ build starts with preprocessing macros 23
DELETE and FREE macros release memory and set

pointer to null 183
Example macros to handle specific issues 183
Macros can take parameters 174
Macros enable customizing the application 12, 172
MAX(a,b) takes two parameters 174
Multiline macros: see Macros (multiline) 172
Print-based debugging relies on macros 170
Text replacements, conditional inclusions, and

assemble files together 23, 169, 210
Macros (built-in)

34 | Index table
__FILE__, __FUNCTION__, __LINE__ 182
__func__ has been deprecated 182

Macros (create)
Backslash for macros across physical lines 171
Cookbook presentation on creating macros 171
Enclose macro parameters and code in paren-

theses 172
Macros start with a #, lie in single line 171
No spaces after macro's name and opening parens

 172
Macros (#define)

BUFFER_SIZE example to store a value 174
#define can take parameters 174
#define macro can take parameters 23
#define macros resemble inline functions 170
Has 5 parts: # pound sign, type, name, parameters,

macro expansion 171
Simplify source code, improve application's

robustness, multiple development scenarios
 170, 174

Macros (#error)
#error gets you to look for macro definition

problem whereas the macro is fine 181
Issues compiler error, stops the build 180
#undef to handle complex macros 181
Verify macro coherence via #if logical macros tests

and trigger #error 180
Macros (#ifdef...#elif...#else...#endif)

AtmelStudio indents #ifdef, not Arduino 218
Comment #endif to match #ifdef 217
#ifdef conditionally selects code 175
#ifdef where is matching #endif or vice versa 216
Long error messages from unbalanced #ifdef 217
Macro turns off code due to bad #endif 217
Provide open/close curly braces to find unbal-

anced/missing #ifdef...#endif 218
Macros (#if defined (...))

Conditional inclusions 24, 170
Create complex logical macro tests using 'defined'

and logical operators 175
defined is a macro keyword 175

Macros (#ifndef...#endif)
#ifndef avoids repeat file inclusions 176, 218

Macros (#include header file)
Header files (.h) and code files (.cpp, .ino) 24, 176
#ifndef avoids repeat file inclusions 176
Macros (#ifndef...#endif) 176
Pastes the content of a file 176

Macros (logical operators)
Are macros coherent with one another? 180
Logical operator names in clear English 182
Macro logical operators AND/OR (&&/||) 177, 180

Macros (multiline)
/*...*/ and // comments in macros 172, 213
Backslash for macros across physical lines 172, 212
Do not use // in multiline macros 172
Forgot backslash in multiline macro 213

Macros (operators)
Concatenation operator ## 177, 178
Parameter differentiation operator /**/ 177, 179
Stringizing macro operator # 177

Macros (#pragma)
Sets compiler directive 182

Macros (#undef)
Helps create complex macro definitions 176

main
Arduino IDE adds 'main' behind the scenes 44
C++ program entry point 40
setup/loop combination - Why? 44

make utility
Arduino IDE (tool chain) 21, 26
Builder is Arduino's name for the make utility 26
File rebuild dependencies 26
makefile - know what you are doing 26
Prevents duplicate work if file not modified 26

malloc See new and malloc
Masks See Bit masks
Maslow's pyramid

Physiological and safety needs, esteem, respect,
recognition, belonging, self-realization 260

Psychological factors 257
What drives motivation? 259

Memory allocations (heap)
Allocation adds two bytes for allocated size 165
Auto allocation variables in stack frame 82, 155
Available allocation space too small 160
Careful when allocating memory 247
Check contiguous and fragmented memory

 48, 153, 160, 188, 228
Constructor initializes; destructor wraps up

 39, 79, 92, 123
Contiguous heap is top of allocated memory to

bottom of stack 158, 160, 166
Destructors wrap-up chores, release memory 39
ExerciseHeap reveals memory consumption 164
Fragmented memory lies between system memory

and contiguous memory 159
Function stack frame bottom of stack 155, 166
Global, static, system data bottom physical RAM

 159
Global, static, system data bottom RAM 155
Heap: from system zone to stack 158, 164
Heap grows upward, releases haphazard 154, 160
How RAM use evolves 159

 Index table | 35
Inadvertent bottom of physical RAM write 160
malloc is a function, new is a C++ operator 39
Memory needs using F() macro 189
new/malloc allocate memory from the heap 39
PROGMEM for read-only variables 98, 153, 154
RAM partitioning 155
Stack grabs/releases memory top-down 154, 159
Stack thrashes top of allocated memory 159
Store read-only variables in flash memory 157
Total heap is fragmented + contiguous heap 160
Upon powerup static, global, system data loaded

bottom physical RAM 155
Use contiguous heap or largest hole in fragmented

heap 161
Use two extra bytes in allocated space to verify

destination size]Global, static, system data
bottom 246

Memory corruption
Adopt preventive measures 247
Find array size with special end of array value 245
Invalid pointers 246
Many possible memory corruption causes 160
Many ways to get into trouble 245
Memory corruption: where/how to proceed 247
No apparent cause and effect 245
Pointer validity not checked 221
Print gibberish, wrong values, etc. 157, 245
Runaway index outside allocated space 160
Runaway index thrashes return address 245
Stack thrashes top of allocated memory 159
String writes, missing end null 246
Unions misuse can thrash variables 246

Memory (heap contiguous)
Between fragmented memory and the stack

 155, 166
How to determine contiguous memory 161

Memory (heap fragmented)
Allocation space too small - fragmented heap 160
__brkval top fragmented heap, __flp bottom 164
Fragmentation ratio 166
Fragmented memory, sum total of holes,

measured by traversing list of holes 158, 165
Memory releases are haphazard hence heap is

Swiss cheese like 155, 165
Total available memory fails to disclose highly

fragmented memory 160
Memory (pools)

Flash memory is where the program (.hex file),
PROGMEM variables, F() macro strings reside 27

Three memory pools: RAM, EEPROM, and flash 27
Memory pools See Arduino memory pools
Memory sharing See Unions
Memory structure

External storage space (RAM, SD card, etc.) 153
Failed allocations, memory fragmented 160
Getting the address of the bottom of stack 161
Memory available for the stack and heap 161
RAM extension chip 153
SD memory card 153
System and user RAM 160
Three memory pools: RAM, EEPROM, flash 153
What goes where in RAM - important to know 160

Memory (total) See Arduino memory pools
Methods See Functions (aka 'methods' in OOP)
MicrochipStudio See AtmelStudio
Microcontrollers

Arduino IDE targets mainly 8-bit Atmel chips 11
Atmel chips available standalone, Raspberry Pi, ESP

32 on boards 11
Atmel chips based on Harvard architectures 153
Clocks, ports, timers, interrupts, register size,

speed, memory, multitasking, concurrency 10
Communications protocols 11
ESP32, RaspberryPi, IofT 12
Features which define microcontrollers 10, 15
Operating system required? 11
PCs, Macs are Von Neumann architectures 153
Programming languages 11
Reduce development cost with Arduino 19
Which chip/language combination? 15

Microsoft VBA See VBA
Microsoft Visual Micro See Visual Micro
Microsoft Visual Studio

C++ Arduino dev with MS Visual Studio 33
C++ Arduino dev with Visual Micro 32

Microsoft Visual Studio See AtmelStudio and Visual
Micro

millis(), micros(), delay() See Timers
Min/max values of built-in types

Table of numeric types 54
Mistakes concerning this book See See Books Web

site (md-dsl.fr)
Mixing numeric types See Gotchas (C++)
mnemonics

typedef 57
Modularization See Linker
Most significant byte (MSB) See Arduino bit func-

tions
Motivation

Maslow's pyramid 259
Psychological factors 273
What drives motivation? 259

MPLAB
May be overkill for Arduino dev 34

36 | Index table
MSB (most significant byte) See Arduino bit func-

tions
Multidimensional arrays See Arrays and indices
Multiline macros See Macros (multiline)
Multiple inheritance See Inheritance
Multitasking and concurrency

C++ features not supported by Arduino 151
C++ short history 9
Concurrency: run several tasks in parallel 151
Go programming language 13
Interrupts enable doing basic multitasking 87
Multitasking means run two or more tasks, concur-

rently or on a time-shared basis 151
Multitasking requires OS to swap tasks 151
Multitasking: run two or more tasks, concurrently

or time-shared 11
mutable See const and mutable

N
Name completion

Arduino 2 supports name completion, not 1.9 22
AtmelStudio, Visual Studio, PlatformIO support

name completion 22
Name mangling See Functions and variables
namespace

C vs. C++ 38
Grouping data together in namespace (class) key

to user-defined types top-down programming
 38, 144

Keyword 'using' C++ namespace equivalent 145
namespace: use variables and functions with same

name from different libraries 144
Scope operator :: resolves name clashes 38, 144
What one needs to be aware of 129

Nesting
Array initialization 124
Curly braces define local scope 104
Recursive functions call themselves 165

Never assume anything
Error handling 145
Good programming practices 47

new and malloc
Allocate memory with new or malloc? 161
Careful: new int() and new int[] different 231
Customize new and delete (overload them) 162
DELETE (new) FREE (malloc) release memory & set

pointer to zero 183, 246
Gotchas (C++) 227
Memory allocations (heap) 65
new/delete operators, free/malloc functions 161
::new - global new 163
new int() vs new int[] completely different 219

new/malloc pointer to allocated space
 39, 162, 227

Use two extra bytes in allocated space to verify
destination size 246

new overloading
Error checking via overloaded new 162
Overloaded new implements malloc 162
size_t _allocSize to define allocation size 162, 163
Use C exception handling (setjmp/longjmp) to

handle errors detected via overloaded new 162
Non-volatile memory

EEPROM 154
Flash memory 154

NOT ~ and ! See bit-level and logical operators
Notepad++

Good programmer multi-language editor 21
NULLPTR

Variable initialized as null pointer 81
null statement

';' null is simplest possible statement 49
Solves no code after label problem 252

Numbers See integers, floats, octal, hexadecimal,
binary

Numeric constants See Constants - character, string,
and numeric

O
Objective C

Early object-oriented programming language 8
Object-oriented programming

C++ classes and structures 91
C++ mechanics 43
C++ short history 8
How one thinks (top-down) 8, 89
Simula, Lisp, Objective C, Smalltalk 89
Types (user-defined) 9, 17, 56
What defines C++ 17
Which chip/language combination? 15

Octal numbers See integers, floats, octal, hexadeci-
mal, binary

OOP See Object-oriented programming
Operator overloading

C++ mechanics 101, 129
Complex numbers use overloaded operators 130
Operator overloading customizes operator 130
Overloaded index operator[] 101, 131, 146, 276
SafeArray template class 276

Operator precedence See Precedence and associa-
tivity

Operators
Build expressions and statements 64
C++ building-blocks 49

 Index table | 37
new/delete operators, free/malloc functions 161
Precedence and associativity 65, 67
sizeof is an operator 65
Table - C and C++ operators 65
try is an operator 73

OR | and || See bit-level and logical operators
Order of execution See Precedence and associativity
Ordinary arithmetic vs. pointer arithmetic

Access array items via subscript or pointer 124
Dereferencing a pointer 219
Index and pointer-based array traversal 280
Index- and pointer-based array traversal 124, 280
Invalid char(*)[4] to uint16_t 201
Ordinary arithmetic using sizeof(char*) 281
Plain and pointer arithmetic differ 124
Pointer arithmetic using sizeof(char*) 281
Size of items in an array 280

Other IDEs
AtmelStudio, Visual Studio, Visual Micro,

PlatformIO, Code::Blocks 33, 34
Other IDEs See Development tools
Out-of-bounds index See Runaway index
out_of_range

Exception class events 149
Overflow_error

Exception class events 149
Overflow/underflow during expression evaluation

Careful with precedence/associativity 224
Compiler upgrades expression to 16 bits 225
Improper data sizes in expression evaluation 224

P
Parameter differentiation operator /**/

Enables parameters be joined 179
Parameter passing

C++ mechanics 42, 102
Careful when passing array as parameter 57
Careful with type checking leniency 121
Three ways: pass by value, address, reference 117

Pass by address
Address of variable via operator & 114
Dereferencing is a computerese trick 114, 117
Pass by address to modify external variable, pass

by reference is alternate 114, 115
Pointer parameters 114

Pass by reference
Alphabetical sort on a contact list saves RAM 117
Bitfields may not be referenced 119
Dual nature of a reference 118
Pass indirectly with a reference cast or directly with

a reference variable 116
Reference initialization 118

References resemble dereferenced pointers 118
Saves RAM when copying objects 117
Work on external function variables 115, 119

Pass by value
Function creates copy of parameter 112
Parameter can be a constant, variable, function,

function pointer, Lambda function 113
Simplest parameter passing mechanism 112

PCB (Printed Circuit Board) See Arduino tool chain
Permanent storage

EEPROM for read-write variables 154
Permissive flag (compiler leniency)

Compiler options 25
Invalid char(*)[4] to uint16_t 202
This flag is required by the Arduino IDE 25
Transforms errors into warnings 25, 202
Type checking leniency 234

PGMP
Convenience PROGMEM macro 190

pgm_read_byte and pgm_read_word
PROGMEM framework 187

PHP
Mainly used for Web server applications 13

Pin or port
Port for boards, pin for microcontrollers 86

PlatformIO
Debugging (hardware-based) for ESP32 34
Extensive learning curve 33
Plug-in tool for Microsoft's VScode 33
Supports name completion 22

platform.txt
Arduino configuration file 25
-flto flag (link time optimization) 25
-fno-exceptions flag 147
-fpermissive mandatory for Arduino dev. 25

Pointer
Array as parameter converted to pointer 57
const pointers offer interesting possibilities 61
new/malloc should return non-zero pointer 162
Pointer-based array traversal 280
Pointer differs from index yet interchangeable 57
Pointer such as int myVal* (pointer to an int) 57
Type qualifiers 79
Using a pointer directly without assigning memory

space creates phantom object (bug) 219
Pointer arithmetic vs. ordinary arithmetic See Ordi-

nary arithmetic vs. pointer arithmetic
Polymorphism

Derived class redefines base class virtual functions
 120

Means take on many forms 120
Name mangling differentiates functions 120

38 | Index table
Port or pin

Port for boards, pin for microcontrollers 86
Ports See Arduino specific functions
Postfix See Prefix/postfix operators (++/--)
Powerup

Global, static, system data bottom RAM 155
Memory allocations (heap) 155, 159
System loads instruction from flash memory

address 0 155
Pow() problem

Add 0.01 to the result of pow() 239
Pragmatic C++

Introduction 1
Practical approach to programming C++ 1
What this book is all about xx

Precedence and associativity
+ higher precedence than shift (<< >>) & == 242
Associativity: right to left, left to right 64, 68, 101
C and C++ operators 65, 67
Can you spot the problem in 5 == 5 + 2 == 3 215
Dereferencing a pointer has low precedence 219
*myPointer++ Is it (*myPointer)++ or

*(myPointer++)? 225
Precedence first, associativity next 64, 68, 101
Use parentheses to define evaluation order 225
Values during expression evaluation 68
What gets done first, add or multiply? 65, 67

Prefix/postfix operators (++/--)
Prefix/postfix increment/decrement 65, 106
Prefix/postfix operators are misunderstood 106

Preprocessor See Macros
Print-based debugging See Debugging (print-based)
private See public
Procedural programming

Bottom-up programming - no top-down 8
C++ short history 8
Characterized by functions which process data 89
Chasm between code and thinking 89
gotos extensively used lead to spaghetti code 12
Many gotos generates spaghetti code 76
Structural programming - gotos banned 17, 76

PROGMEM (read-only data in flash memory)
C++ building-blocks 50, 98
F() and PSTR() macros save RAM by storing data in

flash memory 98, 153, 185, 189
PGMP is a convenience macro 190
pgm_read_byte and pgm_read_word 187
PROGMEM qualifier store in flash memory 187, 193
Small program tests PROGMEM storage 275
Store debugging messages in flash memory 191
Store __FILE__ in flash memory 83, 191
Store float values in flash memory 194

Store read-only variables in flash memory 157
Store struct and class data in flash memory 194
Storing an array of strings in PROGMEM requires

special handling 192
strcpy_P loads string from flash memory into RAM

buffer 187, 193
Things not to do with PROGMEM 190
Web sites which describes PROGMEM 286

Program components See C++ components
Program execution

Instructions taken from flash memory put into
registers one at a time 153

Programming languages
Bottom-up programming 10
C, C++, C# (C-sharp) 12
C programming 10
Delphi - today's version of Pascal 14
Fortran 14
Go programming language 13
HTML (Hypertext Markup Language) 13
Java, JavaScript, PHP 13
Programming languages for Arduino 12
Python and WiPy 13
Smalltalk and Objective C early OOP language 8
VBA (Microsoft's Visual Basic for Applications) 13

Program See Executable file
Prototype board See Arduino
Pseudo-exception handling See Exception handling
PSTR() macro (PROGMEM)

F() macro saves RAM on Serial.prints 188
PSTR() macro stores variables in flash memory 189

Psychological factors
10 commandments of EGOless programming 260
Cognitive dissonance and EGO 258, 271
Flaw in my thought process 266
Good and bad habits 258
Hobbyist's mindset 257
How to be an efficient programmer 258
I code therefore I am 264
Incremental learning 268
Incremental vs. planned programming 259
KISS principle: or why complicate things 266
Know yourself - listen to your body 258
Leave the sandbox to solve the problem 266
Maslow's pyramid 257, 258
Memory, responsibility, patience... influence

programming performance 271
Motivation 273
Planning work offline important 259, 264
Programming requires a healthy mind 257
Psychologically induced errors 259
Psychology of computer programming 258
See ChatGPT - one more tool to help you write

 Index table | 39
better code 268

Thinking is the hardest thing to do 259, 265
To err is human 270
Why does one make mistakes? 208, 263

public
Class data visible from the outside 135
private class data not visible from the outside 135
private for data NOT visible from the outside 135

Pure virtual functions See Virtual & pure virtual
functions, abstract classes

PWM pins See Arduino specific functions
PWM (Pulse-width modulation)

PWM is used to create analog-like voltage 85
PWM (Pulse Width Modulation) See Arduino specific

functions
Python and WiPy

Arduino IDE (tool chain) 16
Interpreted language 13
Which chip/language combination? 14

R
RAM (Random Access Memory) See Memory struc-

ture
Random numbers

Arduino specific functions 83
Hardware driven random numbers 88

range_error See Exception class events
RaspberryPi

Which chip/language combination? 14
Real world entities are the way one thinks See

C++ short history
Recursion See Stack and stack frames
Recursive functions See Nesting
Reference & type qualifier

Reference an object, no need to dereference 56
Reference & type qualifier

Address of or reference to (contextual) 116
Reference as int myRef& 57

register See const and mutable
Regular expressions (regex)

Immensely useful tool not supported by Arduino
editor, supported by AtmelStudio 151

See Defensive C++ Arduino Programming book 151
Reset See Powerup
Return address See Stack frames
Return value See Functions and variables
runaway index

SafeArray class overloads index operator []
 245, 279

Runaway index
Gotchas (C++) 245

Overload operator [] protect from bad index 160
Runaway index thrashes return address 159, 245

S
SafeArray class

Array [] type qualifier and index [] operator 131
Exception handling (C and C++) 146, 279
Handling runaway index 279
Index [] operator overloading 146, 277
SafeArray template for custom typed arrays 277
Template for custom typed arrays 276

Scope resolution operator ::
Accessing class items outside the class 69
Items in a namespace 69
Items in an enum list 69

Scope (visibility)
C++ is a highly scoped language 18
C++ mechanics 101
class and struct 106
Curly braces encapsulate switch cases 106
Function masks variable in outer scope 105, 219
Nameless encapsulation improves readability,

saves RAM 106
Scope levels (curly braces nesting) 105, 106
Variables have global or local scope 18, 104

Scratch for Arduino See Visual development
SD memory card

Memory structure 153
Segmentation fault See Linker
selective code inclusion

Use #ifdef macros for print-based debugging and
alternate dev scenarios 210

Semantics (vocabulary)
Grammar (rules) 25

Sequence expressions
comma operator 65

Serial communications
DEC, HEX, OCT, BIN Serial.print modifiers 88
Serial.begin, Serial.end, if(Serial), etc. 88
Serial class used for serial communications 87
Serial.print modifiers 88
Serial.print, Serial.read, etc. 88

Serial terminal
Arduino IDE (tool chain) 21, 29
AtmelStudio 29
PlatformIO 29, 34
Visualize program behavior via Serial.prints 29

setjmp/longjmp See Exception handling (C and
C++)

setup and loop
Arduino specific functions 44
Do a while(true) in setup instead of using loop 44

40 | Index table
loop for event-based programming 45
setup runs once, loop runs indefinitely 40, 44

Signal functions
Arduino functions to manage signals 83, 85
pulseIn(), pulseInLong(), shiftOut() 85
Square wave, frequency, duration 85
tone() and noTone() 85

signed or unsigned See Types (built-in)
sizeof operator

Defines memory needs of an object 66, 70
Don't forget, sizeof is an operator 70
Getting size of object is fraught with gotchas 230
sizeof array - no. of items or memory needs? 70

size_t
Address size of the target system 64
Atmel 8-bit chips have 16 bit addresses 64
ESP32 has 32 bit addresses 64

Sketch (.ino file) See Arduino C++ editor
Smalltalk

Early object-oriented programming language 8
Source code See Book's Web site
Spaghetti code

Excessive goto use generates spaghetti code 12
GOTO wreaks havoc in procedural programs 73
Many gotos generates spaghetti code 76
Procedural programming rely on gotos 12

Special character escapes See Escape sequences
SRAM (Random Access Memory - RAM) See Memory

structure
Stack and stack frames

Contiguous memory below bottom of stack 166
Functions should contain explicit returns 235, 236
Memory allocations (heap) 166
Monitor function call memory requirements 161
Out of contiguous heap space 159
Runaway index thrashes return address 160
Simple recursion function stack frame size 167
Size of stack frame 167
Stack frames added at bottom of stack 161
Stack frames contain function parameters,

variables, return value & address 155, 167
Stack frames function call overhead 167
Stack frames last-in/first-out (pushed and popped

from the bottom of stack) 158
Stack grabs/releases memory top-down 154
Stack located in top of RAM 158
Stack thrashes top of allocated memory 159

Standard Library, Standard C Library, Standard
C++ Library, Standard Template Library (STL) See
Libraries

Startup See Powerup
Statements

Control flow statements (if, while, etc.) 72
End with a semicolon 49
Fundamental program units accomplish work 72
Program is a collection of statements inside curly

braces code-blocks 49
static

class variable to be instantiated once only 58
Functions and variables 80
Global, static, system data bottom RAM 155
Old C style and new C++ usage 58
Static class variables initialized in global scope 60

static_cast See Enumerations
static data See Global scope
STL (Standard Template Library) See Libraries
Storage specifier See Declarations
strcpy_P See PROGMEM
String constants See Constants - character, string,

and numeric
Stringizing macro operator #

Macro prints variable's name instead of value 177
Strings

Arduino distribution includes String class 51
Break up long strings into substrings 234
C++ mechanics 42, 102
char* array init fail missing comma 235
Constants - character, string, and numeric 52
Length functions do not include end null 122
Linker discards unused strings 192
Missing end null cause of thrashed memory 240
Often-used pre-defined strings 191
Pros and cons of char strings vs. String class 122
Several ways to manage read-only strings 191
Store strings in flash memory with F() macro 185
strcpy, strcat, strlen, strcmp functions 42
Strings in bottom of RAM at startup 155
strlen(myCharStr) & myStr.length() functions 122
Use PROGMEM's F() and PGMP() macros 191

Strings (zero-based indexing forgotten)
Array dimensioning macros will save you time 241
C++ arrays are zero-based 82
char strings end with a null 240
N-size array, first at index 0, last at index N-1 239
Usually first means one, not in C++ 239

Strong type checking
C++ short history 9
Type checking leniency 232
What defines C++ 17

Structural programming See Procedural program-
ming

Structures See class and struct
Subscripts See Arrays and indices
switch (value) {...}

 Index table | 41
Control flow statements 74
Default case not mandatory, should exist and

contain code 76
Encapsulate cases in curly braces 76, 106
Execution choice (case) based upon criterium 76

Synonyms See Aliases
Syntax differences between C and C++

C allows global duplicate declarations 45
C and C++ handle goto differently 46
C does not support name mangling 45
char constant is 16 bits in C, 8 bits in C++ 46
Declare a struct within a struct (nesting) 45
Declare a struct within a struct (struct nesting) 45

System data See Global data
system_error See Exception class events
System variables

__brkval top fragmented heap, __flp bottom 164
__FILE__, __FUNCTION__, __LINE__ 83
__flp/__brkval determine fragmented memory 83
__func__ (deprecated) 83

T
Tables

Data packing into bitfields 132
Date and time packed data 133
Declaration examples 79
Flash memory with & without F() macro 189
Flash, RAM, and EEPROM sizes 154
GitHub on for Arduino, RaspberryPi, and ESP32 16
How RAM use evolves 159
Memory needs using F() macro 189
Min/max to exclude 255 284
Min/max values of built-in types 54
Numeric types (C and C++) 54
Operators (C and C++) 65
Type qualifiers (C and C++) 56

Templates
Advanced mechanisms 125
C++ mechanics 102
GetMinOfTwo - function template example 125
Operator overloading 276
SafeArray class template 277
STL (Standard Template Library) 125
T based template class 128
Type independent classes and functions 102, 125
WolfPack template class example 127

Terminating null See Strings
The C++ Programming Language book

14 chapters describe the The Standard Library 150
Bjarne Stroustrup 150
Preface xix

this
Address of current object, refers to self 139, 140

class and struct 139
Linked list 139

throw
throw operator in C++ exception handling 65

throw See Exception handling (C and C++)
Timers

Arduino specific functions 83, 85
delay() and delayMicroseconds() 85
Interrupts 86
millis() (50 days limit) & micros() measure time

from startup 85
Specify delay in while statements 76

Tool chain See Arduino IDE (tool chain)
Top-down programming

Bottom-up characterizes 3rd gen. languages 10
Bottom-up programming handles details,

top-down maps how you think 43, 89, 91
C++ mechanics 12, 40
Object-oriented programming is top-down 8
Types (user-defined) is top-down 56
What defines C++ 17

Total memory See Arduino memory pools
Transmission constraints

Work-around to send data which excludes 255
values 284

Traps and pitfalls See Gotchas (traps and pitfalls)
try See Exception handling (C and C++)
Type checking

auto type qualifier 219
char* & ints compatible, char* & float NOT 232
Extreme type checking not practical 121, 232
-fpermissive flag (compiler leniency) 234
Gotchas (C++) 219
Missing parameter creates havoc 233
Type checking leniency in parameter passing

 102, 121, 233
Type checking leniency See Types (equivalent nu-

meric types)
typedef

Simplifies programming by creating aliases 57
Typedef

Declarations 78
Function pointers 140
Typedef FPtrVoid fpHelloWorld 141

Type qualifiers
Array type qualifier [] 79
C++ building-blocks 49
C++ program components 56
Derived type from type qualifier on basic type 56
Function () type qualifier 79
Lambda []() creates function on the fly 79
Pointer * 79

42 | Index table
Table of type qualifiers 56
volatile and register 63

Types (basic and derived types)
Aliases (uint8_t, etc.) 54
auto built-in type automatically sets type 55, 79
Basic type + type qualifier ==> derived type 53, 56
Built-in type sizes, from 1 byte to 8 bytes 54
C++ building-blocks 49
char types are signed - don't know why 55
Declarations 78
int, long, char, etc. are built-in types 54
Numeric types (compatible) 121
Serial.print cannot print individual extended ASCII

characters (ex. ñ) but can in string 55
size_t returns microcontrollers address size 55
unsigned modifiers, signed by default 54
User-defined types enrich basic types 56

Types (equivalent numeric types)
C++ mechanics 102
Mixing integer and pointer parameters gotcha 121
Numeric types equivalence concept 121
Strong typing not carried to extremes 121
Type checking leniency vs. strong typing 121

Types (user-defined)
C++ short history 8
class and struct 56
Create programs close to how you think 43
Object-oriented programming (top-down) 17, 56
Simplifies programming (map how you think) 56
What defines C++ 56

U
uint8_t, int16_t, etc. See Aliases (uint8_t, etc.)
Underflow_error

Exception class events 149
Underflow See Overflow/underflow in expression

evaluation
Undo (ctrl-Z) bug See Arduino IDE bugs
Unions

Beware, a union looks like a structure 96
C++ building-blocks 50
Decompose float into 4 bytes to send across a

serial port 96
Save RAM via memory sharing 96
Union member thrashes other member 96, 246
What defines C++ 18

Unreferenced symbol See Linker
uploader See avrdude
User-defined types See Types (user-defined)

V
Variables See Functions and variables

VBA
Evolved from early BASIC (DOS) 10
Word, Excel, PowerPoint, etc. programming 13

Verbose messages See Error messages and warnings
Virtual and pure virtual functions, abstract classes

Polymorphism 120
Virtual & pure virtual functions, abstract classes

Derived class redefines base class functions 136
Pure virtual functions: no code 136
Virtual functions key to inheritance flexibility 136

Virtual & pure virtual functions, abstract classes
Pure virtual functions: no code 138
Transparently cycle derived classes 137

Visibility See Scope
Visual Basic for Applications See VBA
Visual development

Blynk for Arduino - business oriented tool for IoT
devices 35

Drag and drop code-blocks 35
Scratch for Arduino - tool designed for children

who want to program 35
Visualino - promising visual development, stopped

evolving in 2017 35
Visualino See Visual development
Visual Micro

Provides the upload process to Visual Studio 27
Supports name completion 22
Supports serial debug 29

void functions
Specify a return type otherwise returns int 79
void function does not return anything 79

volatile See const and mutable
Voltage level

Digital and analog I/O functions 84
Von Neumann architectures

Alternate is Harvard architecture 153
PCs, Macs program and data reside in RAM 153

VScode See PlatformIO

W
Warnings on

Arduino IDE 224
Errors become warnings thus allowing build 202
platform.txt 202

Web site See Book's Web site
What defines C++

C++ is a highly scoped language 18
C enhanced with user-defined types 16
class and struct 18
Create compact, fast applications 16
Direct memory access 18
Embedded C 16

 Index table | 43
Inheritance 17
Object-oriented programming (top-down) 17
Rich set of operators 18
Strong type checking 17
User-defined types 56

What is a C++ program
Complete minimalist Arduino program: main

(hidden) + setup + loop 40
Modularization (collection of .cpp modules) 40
Starts with main, calls other functions 40
What one needs to master 37

What one needs to be aware of
C++ features not supported by Arduino 130, 150
Complex numbers 130
Data packing (bit-level) 129
Error handling and exception handling 129
Functions and variables 129
Inlining 129
Lambda functions [](){...} 129
namespace 129
The C++ Programming Language book 150

What one needs to master
Arduino specific functions 83
C++ building-blocks 2
C++ C++ mechanics 2
C++ enhancements to C 37
Libraries 51
What is a C++ program 37

Which chip/language combination?
Arduino in short list 14
Choosing programming language & target micro-

controller is compromise 14
Costs and development time 15
Devices, sensors, hardware support 15
Employment and futureproof knowhow 15
ESP 32, RaspberryPi, Espruino, WiPy 14
Python and WiPy 14

while (condition) {...}
Control flow statements 74
while to for transformation 75
while (true) in setup() replaces loop() 44, 75

Why does one make mistakes?
Being careful is not good enough 207
Inadequate offline preparation 208
Poor physical and/or mental condition 208
Psychological factors 208
Tweak and test the algorithm 208

Why I wrote this book
Programming my beehive weighing system was a

hassle xix
WiPy See Python
Word boundary See Bitfields

X
XOR ^ See Bit-level operators

Z
Zero-based indexing forgotten See Strings (ze-

ro-based indexing forgotten)

