

Pragmatic C++ Arduino Programming by Michèle Delsol

Proper names, trademarks, and designations used by the author are capitalized to distinguish
them from ordinary text. They are the property of their respective owners. The author and
publisher of this book have no intent at establishing any relationship whatsoever with the
owners of these names, trademarks, and designations.

The author and publisher have exercised due diligence as to the exactitude of the book's content
and issue no explicit or implied warranty of any kind as to the suitability of content presented
for any purposes whatsoever and assume no responsibility for errors or omissions. The author
and publisher assume no liability for incidental or consequential damages resulting from the
use of information, code snippets, and programs presented in this book.

First published via Amazon August 2023.

Delsol, Michèle
 Pragmatic C++ Arduino Programming / Michèle Delsol, first edition
Copyright © 2023 by Michèle Delsol

All rights reserved. Printed via Amazon "Print-on-demand" in the United States and in other
countries where Amazon distributes this book. This book is protected by United States and
international copyright laws. No parts of this book may be copied in any form whatsoever;
permission must be obtained to reproduce parts and the entirety of this book by any means
whatsoever: electronic, photocopying, mechanical, or other.

Indexing was undertaken via JavaScript scripts applied on manually created tags. The indexing
system was created by the author.

The marmoset monkey illustration on the front cover is an original pencil and China ink
drawing by the author.

Paperback edition : ISBN 978-2-9585628-0-9
First edition published via Amazon August 2023 in paperback, hard cover, and electronic
(Kindle) formats.

ii | Copyright

Table of contents
List of tables and figures � xv
Acknowledgements � xvii
Preface � xix
Introduction � 1
Chapter 1 Arduino and C++  � 5

1.1  A short history of C and C++ � 7
1.2  C++ programming � 9
1.3  Microcontrollers � 10
1.4  Programming languages � 12
1.5  Which chip/language combination? � 14
1.6  What defines C++ � 16

Chapter 2 Arduino IDE  � 19
2.1  Arduino C++ editor � 21
2.2  Preprocessor � 23
2.3  Compiler � 25
2.4  Linker � 26
2.5  Make utility � 26
2.6  Uploader (avrdude) � 27
2.7  bootloader � 27
2.8  Serial terminal � 29
2.9  Hardware-based debugging � 29

Chapter 3 Other IDEs  � 31
3.1  AtmelStudio � 32
3.2  Visual Micro for MicrochipStudio (AtmelStudio) � 32
3.3  Visual Micro for Microsoft Visual Studio � 33
3.4  VS Code (Visual Studio Code) � 33
3.5  PlatformIO � 33
3.6  Code::Blocks � 34
3.7  MPLAB � 34
3.8  Visual development � 35

3.8.1  Visualino � 35
3.8.2  Scratch for Arduino � 35
3.8.3  Blynk for Arduino � 35

3.9  Artificial intelligence (ChatGPT) � 35

Chapter 4 What one needs to master  � 37
4.1  C++ enhancements to C � 38

iii

4.2  What is a C++ program � 39
4.3  What does a C++ program look like � 40
4.4  What to do with setup and loop � 44
4.5  Syntax differences between C and C++ � 45
4.6  Good programming practices � 46

Chapter 5 C++ building-blocks  � 49
5.1  Comments � 51
5.2  Constants � 52
5.3  Types � 53

5.3.1  Built-in types � 54
5.3.2  User-defined types � 56

5.4  Type qualifiers � 56
5.4.1  typedef � 57
5.4.2  auto � 58
5.4.3  static � 58
5.4.4  const and mutable � 61
5.4.5  register and volatile � 63
5.4.6  size_t � 64

5.5  Operators � 64
5.5.1  Operator precedence and associativity � 67
5.5.2  Special symbol colon ':' � 69
5.5.3  Special symbol double-colon '::' - scope resolution operator � 69
5.5.4  sizeof operator � 70
5.5.5  Bit-level operators � 70

5.6  Code-blocks � 72
5.7  Statements � 72
5.8  Control flow statements � 73

5.8.1  if (condition) {...} else {...} � 74
5.8.2  for (iterate) {...} � 74
5.8.3  for (each) {...} � 75
5.8.4  while (condition) {...} � 75
5.8.5  do {...} while (condition) � 76
5.8.6  switch (value) {case1, case2, ... } � 76
5.8.7  goto label � 76
5.8.8  Exception handling (C) setjmp/longjmp � 77

5.9  Functions and variables � 78
5.9.1  Variables � 81

5.10  System variables � 83
5.11  Arduino specific functions � 83

5.11.1  Digital and analog I/O functions � 84
5.11.2  Signal functions � 85
5.11.3  Timers � 85

iv | Table of contents

5.11.4  Interrupts � 86
5.11.5  Serial communications � 87
5.11.6  Random numbers � 88
5.11.7  Arduino bit functions � 89

5.12  class and struct � 89
5.12.1  Constructors and destructors � 92
5.12.2  Bitfields � 93

5.13  Arrays and indices � 94
5.14  Unions � 96
5.15  Enumerations (enum) � 97
5.16  Save RAM with PROGMEM � 98
5.17  Libraries � 98

Chapter 6 C++ mechanics  � 101
6.1  Header files (.h) and code files (.cpp, .ino) � 103
6.2  Scope (visibility) � 104
6.3  Increment/decrement prefix/postfix (++/--) � 106
6.4  Function creation � 109
6.5  Parameter passing � 112

6.5.1  Pass by value � 112
6.5.2  Pass by address � 114
6.5.3  Pass by reference � 115
6.5.4  Pass by reference saves time, money, and RAM � 117
6.5.5  Pass by reference summary � 118

6.6  Polymorphism � 120
6.7  Compatible numeric types � 121
6.8  Strings � 122
6.9  class/struct array initializations � 123
6.10  Arithmetic on array items � 124
6.11  Templates � 125

Chapter 7 What one needs to be aware of  � 129
7.1  Operator overloading � 130
7.2  Data packing (bit-level work) � 131
7.3  Inheritance � 134

7.3.1  Virtual functions, pure virtual functions, abstract classes � 136
7.3.2  Cycling through derived classes � 137

7.4  this � 139
7.5  Function pointers � 140
7.6  Inlining � 142
7.7  Lambda functions � 143
7.8  namespace � 144
7.9  Error handling � 145

Table of contents | v

7.10  C++ exception handling � 147
7.11  Complex numbers � 150
7.12  C++ features not supported by Arduino � 150

Chapter 8 Memory management  � 153
8.1  Arduino memory pools � 154
8.2  RAM partitioning � 155
8.3  How RAM use evolves � 157
8.4  Managing RAM � 160

8.4.1  Available RAM � 161
8.4.2  Heap � 164
8.4.3  Stack frames � 167

8.5  Use EEPROM to store data from run to run � 168

Chapter 9 Macros  � 169
9.1  Macro uses � 169
9.2  How to create macros � 171
9.3  Multiline macros � 172
9.4  Macro types � 172

9.4.1  #define macros � 174
9.4.2  #ifdef macros � 175
9.4.3  #if defined(...) &&/|| (AND/OR) defined(...) macro � 175
9.4.4  #undef macro � 176
9.4.5  #include header files � 176
9.4.6  #ifndef macro � 176
9.4.7  Macro operators � 177
9.4.8  #error macro � 180
9.4.9  #pragma compiler options macro � 182

9.5  Built-in macros � 182
9.6  Library macros � 183
9.7  Some useful macros � 183

Chapter 10 PROGMEM framework  � 185
10.1  Basic PROGMEM concepts � 186
10.2  The PROGMEM type qualifier � 187
10.3  PROGMEM get functions � 187
10.4  C-like PROGMEM functions � 187
10.5  F() macro � 188
10.6  PSTR() macro � 189
10.7  PGMP helper macro � 190
10.8  PROGMEM no-nos � 190
10.9  Using built-in variables and memory requirements � 191
10.10  char* string memory requirements and PROGMEM � 191
10.11  Array of strings � 192

vi | Table of contents

10.12  Storing and retrieving read-only float values � 194
10.13  Storing and retrieving read-only struct and class data � 194

Chapter 11 Arduino IDE bugs  � 197
11.1  Undo - ctrl-Z � 198
11.2  Segmentation fault � 199
11.3  Arduino IDE loses it � 200
11.4  Checksum error � 200
11.5  Stray '\357' in program � 201
11.6  Invalid conversion from char'(*)[4] to uint16_t � 201
11.7  Mysterious glitches solved by standardizing development � 202
11.8  Sketch's serial port gotcha � 203
11.9  No alert on externally modified file � 204
11.10  Windows Command Processor, aka DOS box � 204

Chapter 12 Gotchas  � 207
12.1  Why does one make mistakes? � 207
12.2  Suggestions to reduce gotchas � 209
12.3  Macro gotchas � 210

12.3.1  Space between name and parameter open parens � 211
12.3.2  Tokenization creates extra spaces � 212
12.3.3  Semicolon in macro � 212
12.3.4  One too many backslashes � 212
12.3.5  Missing backslashes � 213
12.3.6  Commenting out part of a macro � 213
12.3.7  Function as macro parameter may generate side effects � 214
12.3.8  Unsatisfactory macro parameters isolation � 215
12.3.9  #ifdef...#endif misplacements � 216
12.3.10  Unbalanced #ifdef…#endif pairs � 217

12.4  C++ gotchas � 218
12.4.1  C++ traps and pitfalls � 221
12.4.2  One-line multivariable declarations � 223
12.4.3  Mixing numeric types � 223
12.4.4  Overflow/underflow during expression evaluation � 224
12.4.5  Dereferencing has low precedence � 225
12.4.6  Dereferencing a function pointer parameter � 226
12.4.7  Redefining a variable or object which already exists � 226
12.4.8  Bad pointers - failure to check allocation success � 227
12.4.9  Bad pointers - using a pointer directly without assigning memory space � 228
12.4.10  Bad pointers - failure to set pointer to zero after free or delete � 229
12.4.11  sizeof gotchas � 230
12.4.12  new int() vs new int[] � 231
12.4.13  Comma instead of semicolon � 231

Table of contents | vii

12.4.14  Function call - missing () � 232
12.4.15  Type checking leniency � 232
12.4.16  char string concatenation � 234
12.4.17  Return values � 235
12.4.18  No code after a label � 236
12.4.19  Size of an array passed as a function parameter � 237
12.4.20  float to uint32_t conversion - problem using pow() � 238
12.4.21  Zero-based indexing forgotten and null string termination � 239
12.4.22  Default function type � 241
12.4.23  Bit-level coding and precedence � 241
12.4.24  Function not called � 243
12.4.25  Wrong number of parentheses or curly braces � 243
12.4.26  Unwanted automatic curly brace � 244
12.4.27  Negligent copy/paste leads to bad declarations � 245
12.4.28  Memory corruption � 245

Chapter 13 Interpreting error messages  � 249
13.1  Expected initializer before 'xyz' � 249
13.2  Expected primary expression before 'char Foo(10, char* msg);' � 250
13.3  Expected unqualified-id before '{' token - missing first '\' in macro definition � 250
13.4  Expected primary expression before ')' token - forgot macro parameters � 251
13.5  Expected primary expression before '{' - label gotcha � 251
13.6  Expected ';' before '{' - initializer left in � 252
13.7  'Serial' does not name a type - forgot a backslash in macro definition � 252
13.8  Stray '\' in program - one too many '\' in macro definitions � 253
13.9  Call overloaded 'myFunction' is ambiguous � 253
13.10  Multiple types in one declaration � 254
13.11  Misleading message following an enum declaration error � 255
13.12  Inaccessible member of � 255

Chapter 14 Psychological factors  � 257
14.1  Maslow's pyramid (motivation) � 259
14.2  Psychology of computer programming � 260
14.3  Cognitive dissonance and EGO � 260
14.4  Good and bad habits � 261
14.5  How to be an efficient programmer � 262
14.6  Understand how your body and mind function � 263
14.7  Plan your work offline � 264
14.8  Think! � 265
14.9  Incremental vs. planned programming � 267
14.10  Practical considerations from a psychological perspective � 269
14.11  Examples of psychologically induced errors � 270
14.12  Key psychological factors � 271

viii | Table of contents

Chapter 15 Appendix  � 275
15.1  PROGMEM framework program � 275
15.2  SafeArray class � 276
15.3  Pointer arithmetic � 280
15.4  AtmelStudio vs. the Arduino IDE - code used or not used � 282
15.5  Transmission constraints - 255 not allowed � 284

Chapter 16 Bibliography  � 285
16.1  Bibliography - C/C++ programming � 285
16.2  Bibliography - PROGMEM framework � 286
16.3  Bibliography - Software Engineering � 287
16.4  Bibliography - Regular Expressions (regex) � 287
16.5  Bibliography - Awk � 287
16.6  Bibliography - Perl � 287
16.7  Bibliography - Arduino � 288
16.8  Bibliography - AtmelStudio (now MicrochipStudio) � 288
16.9  Bibliography - Visual Micro � 288
16.10  Bibliography - PlatformIO � 288
16.11  Bibliography - Espruino and JavaScript � 289
16.12  Bibliography - Hardware-based debugging � 289
16.13  Bibliography - Programming psychology � 289

A note on the book's source code � 291
About the author � 293
Index table � 295

Table of contents | ix

This page intentionally left blank

x

List of tables and figures

Table 1.1 - GitHub products for Arduino, RaspberryPi, and ESP32 - 11/19, 12/20 and 10/21 � 16
Table 5.1 - C numeric types min/max values � 54
Table 5.2 - Some common type qualifiers to create derived types � 56
Table 5.3 - Table of operators. � 65
Table 5.4 - Symbols used as type qualifiers and as operators � 66
Table 5.5 - Declaration examples. � 79
Table 7.1 - Data packing into bitfields - typical examples � 132
Table 7.2 - Date and time packed data - from 8 bytes to 5 bytes. � 133
Table 8.1 - Flash, RAM, and EEPROM sizes of Arduino microcontrollers.  � 154
Table 8.2 - How RAM use evolves. � 158
Table 10.1 - Memory requirements using the PROGMEM F() macro . � 189
Table 10.2 - Flash memory used with and without the F() macro. � 189
Table 15.1 - Min/max values of numbers which exceed 255. � 284

xi

This page intentionally left blank

xii

Acknowledgements

T his book, Pragmatic C++ Arduino Programming and its companion, Defensive
C++ Arduino Programming, are the result of chance encounters which led me to
beekeeping and to create Arduino-based gadgets. Put the two together and, aha! Why

not create an Arduino-based beehive weighing system. That is how it all got started. And one
thing leading to another, I got into writing two books which address the needs of C++ savvy
DIY Arduino makers.
I must thank the many who contributed to my getting started on writing these books and
continuing it to its ultimate conclusion.
First in line is Daniel T. I am particularly grateful to him since he made me discover Arduino.
His electronics advice, despite his being a practicing pediatrics surgeon, hence electronics not
being his field at all, contributed immensely towards getting me started with Arduino.
And I thank Christine C., my psychoanalyst, whom I see regularly to express my little travails.
She has been an unconditional supporter of my endeavor.
And then there is Charlie H., a practicing physician and fellow airplane builder (RV8). He
introduced me to beekeeping - a few visits to his bee yard and I was hooked.
There is of course Xavier M., who purchased my company years back and who has since become
a friend. His continued support has contributed to my persevering in this book's endeavor.
My neighbors Martine and Olivier B. continuously supported my endeavors. My special thanks
to them. I must say that as the project advanced from milestone to milestone, we celebrated by
opening one or two bottles of Champagne - by now, a few cases have gone down our respective
esophagus.
As luck would have it, Allison (Olivier's daughter) is an InDesign professional consultant. I am
thankful to her as she agreed to create the print and digital ready document. She was patient
as she suffered through my unorthodox approach which consisted in creating tags in Word
which would be used by an InDesign JavaScript script to produce the finished book (layout,
cross references, indices, table of contents, etc.).
I must also thank daughter #1 Giselle, also an author, for her continued support.
Finally, but not least, I owe daughter #2 Pascale special thanks as she patiently proofread
both manuscripts, a total of four hundred plus A4 pages of tight letter size text. Since I am an
engineer, my thought process, hence sentence construction, tends to be a bit linear (somewhat
tedious to read). She managed to smooth things out and put some pep into many of my phrases.
And I thank all those others who manifested their support as they patiently heard me out as I
described my project.

xiii

This page intentionally left blank

xiv

Preface

T his book, Pragmatic C++ Arduino Programming, is the first book of a two-book set,
the other being Defensive C++ Arduino Programming. They are a by-product of my
current beekeeping hobby - it led me to develop an Arduino-based beehive weighing

system. On the programming side, the Arduino IDE seemed to be the perfect tool: user-friendly
and free. I installed it, pulled out my old C++ textbooks (yes, I had written some C++ in the
past), ran the Blink program on an Arduino Uno, and gradually learned to program Arduino. I
managed this at the ridiculously low cost of about $30 including the hardware. Trying out the
examples provided in the IDE and experimenting with small electronic circuits on the Uno
were immensely rewarding.
Things did not turn out as easy as I anticipated. I discovered that my C++ skills had gotten
a little rusty over time, which led me to do some serious reviewing. I started with the most
basic features of the language by doing a "Hello World" to make sure I did not miss anything.
I then spent considerable time doing breadboard work on my subsystems: opamps, clock,
radio, and GSM. This proved to be time consuming, much more than I first anticipated, but
I did manage to get the individual systems to work. I was beset by glitches: problems which
occurred occasionally, unable to make them occur systematically. Part of the problem was
electrical stability because I was using breadboards. They are fine for as long as you are dealing
with DC current; but, as soon as you start doing serial communications, poor connections and
capacitive effects corrupt signals. It is what got me into creating soldered prototype boards on
top of an Arduino ATmega2560. This combination provided both ample storage space and lots
of dynamic memory space (RAM). But I was still getting glitches. The other part of the problem
proved to be my programming - it was peppered with errors which I qualify as traps and pitfalls
and common programming errors. These are reviewed extensively in Gotchas (page xv).
Let me explain. C++ is deceptively simple. I use the word deceptively because you and I,
inexperienced C++ programmers, will be fooled by C's relatively simple syntax. You will
inevitably fall into one of many C++ gotchas - an unexpected problem will stop you dead in
your tracks and you do not have the slightest clue as to why. C++ is a minefield but do not let
this fact scare you - just be careful. You dedicated hours to debugging yet failed to identify the
culprit. I have personally been caught by every trap, pitfall, and common programming error
C++ could lay along my path.
Gotchas are very real - they will slow you down and weaken your application. If you are to
undertake safe programming, i.e., not waste inordinate time finding and eradicating your
bugs, you need to have a sound foundation in C++, understand how easily errors can creep in,
and organize your code. This is where pragmatic programming comes in, the subject matter of
this book.
In the process of reviewing my C++ skills, I found that most textbooks were overkill. By this
I mean that they address the needs of the professional C++ programmer and not the needs of
the Arduino programmer such as myself, who does it as a hobby. We Arduino programmers
need short, practical, clear explanations. Faced with a vocabulary which can become cryptic
(lambda, pass by reference, namespace, etc.), learning the language can be tedious. As a
newbie Arduino programmer, I found myself overwhelmed by the sheer quantity and depth

xv

of advice as to what, how to, and why. The C++ Core Guidelines is more than 500 pages long
(see Bibliography page xvi); although an excellent and exhaustive work, it is overkill when
addressing the needs of an Arduino programmer, and much too cumbersome to be practical.
Another example, the excellent Bjarne Stroustrup's The C++ Programming Language book
(4th edition) is 1347 pages long and covers C++ up to C++11. There is C++17, and more recently,
C++20. Bjarne's first edition is 328 pages long - the extra 1000+ pages of his 4th edition illustrate
how much the language has evolved and how much more there is to C++.
The typical Arduino programmer needs to master just a small subset of the language. Be
pragmatic - learn what you need and be aware as to what you might need later on. This book
explains in detail the essential subset and describes most of the remaining features which you
will probably never use within the context of Arduino programs.
The core C++ concepts which I believe one needs master are based upon my experience
developing my beehive weighing system - it got to be big: 35 files, 15,000 lines of code.
Unfortunately, I miserably failed to insert comments into my code to document the algorithms.
As I progressed on my application, I had a hard time understanding code I had written. This
incited me, slowly but surely, to adopt good programming practices: comment code, organize
files, develop AtmelStudio/Visual Studio/Arduino IDE interoperability, etc. As my experience
and knowledge evolved, the defensive programming concept started to materialize. After a
while, I had considerable content which led me to write a second book: Defensive C++ Arduino
Programming, a set of C++ how to: getting to know and use AtmelStudio, Visual Studio, Visual
Micro, Perl, Awk, regular expressions, and toolboxes (frameworks). The tools I learned how
to use and the frameworks I developed helped me improve my productivity and render my
Arduino application more compact, fast, maintainable, and robust. Defensive means go beyond
being good at programming with C++; it means use the right tools and techniques.

xvi | Preface

Introduction

T he two books, Pragmatic C++ Arduino Programming and Defensive C++ Arduino
Programming, are offsprings of my Arduino-based beehive weighing system endeavor.
In the process of developing it, I had to review my knowledge of C++, all the while

taking notes to consolidate my learning. I also developed frameworks to better organize my
program, more notes; these ultimately morphed into two books.
I had sufficient C++ experience, albeit a touch rusty, to develop my application. I consequently
reviewed C++ on an as needed basis. There were many advanced C++ features I did not use
but, since I was progressing nicely and since I had no need for these advanced constructs, I
concluded that they concerned professional programmers writing large applications. I did
ultimately use operator overloading and simple inheritance, got to use the & reference qualifier,
and created an exception handling like mechanism for error handling.
Lots of C++ books have been published. So why another one? The answer is that I found no
book which addresses the needs of the already savvy self-taught C++ Arduino programmer.
This book is meant to be a pragmatic primer of C++ features an Arduino programmer will use.
It separates the basic features we should know from the advanced features none of us Arduino
programmers are liable to use. It is not a reference work for professional programmers, nor a
textbook for a course. Its aim is to be a pragmatic presentation of C++ to help Arduino developers
improve their productivity and enhance their understanding of the language's features. An
additional goal is to alert the C++ programmer that the language is treacherous - its simplicity
is deceptive. You, as I did, will spend far more time debugging than developing the application.
This book covers typical errors one might make.
The title of this first book contains the word pragmatic. Being pragmatic implies that practicality
dictates "What one needs to master". Arduino developers (Atmel, ESP32, and others) need
to master basic features and have a working knowledge of advanced features. Behind the
specialized terms lie simple but subtle concepts (pointers, pass by reference, classes, etc.).
Furthermore, over the years, the language has integrated ever more complex mechanisms
(lambda functions, inlining, concurrency, multitasking, exception handling, regular
expressions, etc.). Although most of us Arduino developers do not need to use these advanced
features, they are listed and described in What one needs to be aware of (page 1).
I wrote this book with an eye towards practicality. Its content is broken up into chapters, as
follows:
•	 "Chapter 1 Arduino and C++" (page 1) covers what Arduino is, where it comes from, why

C++, and what it is good for (pros and cons), microcontrollers, programming languages,
and language/chip combinations.

•	 "Chapter 2 Arduino IDE" (page 1) introduces the Arduino development tools: the Arduino
IDE, the Arduino C++ editor, the GNU toolchain (preprocessor, compiler; linker, make
utility, avrdude, bootloader).

•	 "Chapter 3 Other IDEs" (page 1) introduces AtmelStudio (MicrochipStudio), Visual Micro
for MicrochipStudio (AtmelStudio), Visual Micro for Visual Studio (Microsoft), VS Code,
PlatformIO, Code::Blocks. It also introduces some visual development tools and using AI
(ChatGPT) to kick start specific development needs.

1

•	 "Chapter 4 What one needs to master" (page 2) - C++ building-blocks (identifiers, types,
operators, etc.) and the mechanics to assemble these into functional features (functions,
scope, type checking, polymorphism, etc.) are what one needs to master.

•	 "Chapter 5 C++ building-blocks" (page 2) are items one works with: variables, operators,
control flow statements, functions, classes, etc.

•	 "Chapter 6 C++ mechanics" (page 2) are rules which govern using the C++ building-blocks -
they should be well understood. You should know how the pass by reference mechanism
works, organize bitfields, and understand how operator precedence affects a statement's
evaluation, and more.

•	 "Chapter 7 What one needs to be aware of" (page 2) - These are the C++ concepts the
Arduino developer should be aware of but would probably not use.

•	 "Chapter 8 Memory management" (page 2) - Having enough memory throughout an
application's life cycle is crucial to its performing reliably. Memory allocations and
function calls consume memory; the programmer should at all times ensure that the
application's needs are met.

•	 "Chapter 9 Macros" (page 2) are a unique feature of C++ - They are handled by the
preprocessor, a text replacement, conditional inclusion, and file inclusion utility
which preprocesses the source file before passing it on to the compiler. They grant the
programmer flexibility not available in other programming languages.

•	 "Chapter 10 PROGMEM framework" (page 2) - Arduino provides facilities to store read-only
variables and constants in flash memory, thereby providing the possibility of saving
considerable RAM space.

•	 "Chapter 11 Arduino IDE bugs" (page 2) - Nobody is perfect. The Arduino IDE, the editor,
compiler, and linker in particular, manifest some annoying bugs which finally pushed
me into using AtmelStudio (and later Visual Studio/Visual Micro) as my main Arduino
programming tool.

•	 "Chapter 12 Gotchas" (page 2) - Since C++ programming is akin to walking through a
minefield, a roadmap of mines (gotchas) should be included in a C++ programmer's
training. There are two kinds of gotchas: macro gotchas and C++ gotchas. Given that the
preprocessor is a rather unsophisticated text find and replace processing tool, it can be
a source of surprising runtime problems, particularly since the preprocessor does not
generally produce error messages. Both macro gotchas and C++ gotchas are extensively
expanded upon.

•	 "Chapter 13 Interpreting error messages" (page 2) - It is unfortunate that compiler designers
remain entrenched in their highly specialized lingo - some error messages are downright
ludicrous.

•	 "Chapter 14 Psychological factors" (page 2) - Our minds are complex machines. Be careful
with your subconscious - it will make you do things which are not good. Laziness,
persisting down an erroneous path, not preparing sufficiently before undertaking a task -
all these can lead to excessive debugging, duplicate work, and unnecessarily complex
algorithms.

•	 "Chapter 15 Appendix" (page 2) presents details on setting up a SafeArray class which
overloads the index [] operator to check on possible out-of-bounds array indexing
conditions, doing pointer arithmetic, defining code used or not used, and a how-to

2 | Introduction

avoid using 255 values during radio transmission.
•	 "Chapter 16 Bibliography" (page 3) covers C++ books, YouTube videos, documents, and

links I found relevant.
•	 A note on the book's source code (page 3) details how to get the book's source code from https://

md-dsl.fr - MIT Open Software License.
•	 About the author (page 3) provides insight as to why I wrote this book and its companion:

Defensive C++ Arduino Programming.
•	 Index table (page 3) - Since most technical books are reference works, a comprehensive

index table is a must. It is frustrating to open a book, look for something which is surely
in the book, yet it is not in the index table. The reader should find, via the index table, just
about everything that is in the book.

If your Arduino program is thousands of lines of code, having a good understanding of C++ is
not good enough. You need to be pragmatic, which means know and understand enough to get
the job done correctly. You also need to apply defensive programming techniques: work with good
tools, understand how to organize workflow, avoid reinventing the wheel. You need to use
frameworks and adopt a professional developer mindset. The companion book, Defensive
C++ Arduino Programming, meets these needs; it should help you improve your productivity
and render your application more robust.

 | 3

This page intentionally left blank

4

Chapter 1 Arduino and C++

Arduino and C++

A rduino is a fantastic tool. It grants hobbyists access to microcontroller development
at a ridiculously low cost. As of 2022 it costs a mere $30 plus a little more for the
electronic components. On the software side, the Arduino IDE is incredibly easy

to use. Furthermore, its learning curve is short, and it is free. With this in mind, you should
seriously consider a contribution to the Arduino group if you are to use Arduino extensively.
In a word, using Arduino is a win-win. Get an Arduino board, get a breadboard and a few
components, install the Arduino IDE, and voilà, you are ready to go. Add more components,
bring in more functionality, and you will find that your initial Arduino endeavor is turning
into a major project - it can be a lot of fun.
Before continuing, a word on "Why C++?". Microcontrollers are expensive; consequently,
using the smallest possible microcontroller to meet the needs of a given job is a top-level
design imperative. This is why practically all programs which need to be as compact and
fast as possible are written in C++. There is just no other language which can beat it aside
from assembler but using it is prohibitively costly from a development, debugging, and testing
perspective. Choosing a chip/language combination is expanded upon in Which chip/language
combination? (page 5). And now, back to Arduino.
Creating a beehive weighing system is what got me into learning what I needed to know on
Arduino and C++. My project (as well as most projects) may be summarized as follows:
•	 Proof of concept - I initially worked on breadboards during the proof of concept of

individual components: strain gages connected to opamps, optocouplers, voltage
regulators, radio communications, sending/receiving SMSs, and clocks.

•	 Prototyping - I migrated from breadboard Arduino UNO to soldered prototype boards on
top of ATmega2560 boards.

•	 Final product - I created my own stand-alone Atmel based PCB directly programmable
from my PC.

•	 Programming Arduino - As I worked on the hardware, I progressively learned how to use
the Arduino IDE and the Arduino specific C++ mechanisms to develop the program
which would drive the beehive weighing system.

At some point during the development phase, I looked at AtmelStudio. What I initially
discovered prompted me to conclude that the learning curve was quite steep and that importing
an Arduino project was complicated. I therefore continued with the Arduino IDE despite the
occasional segmentation fault or mess up my source code undo (ctrl-Z). Then, one day, Atmel
released AtmelStudio V7, the all-important new feature being its ability to create AtmelStudio
projects directly from Arduino .ino sketch files. This new feature, plus the fact that I was fed up
with ctrl-Z messing up my source code, and the segmentation fault, got me to try AtmelStudio. So, I

5

buckled down and dedicated time to AtmelStudio - its learning curve proved to be surprisingly
short. I tried importing a small sketch and was successful. Wow! It was easy and worked
well. Then I tried it on my large beehive weighing system Arduino program. To my surprise,
importing my 35 files/15000 lines of code was quick and flawless. I gradually discovered how
a real professional IDE could make coding a lot less stressful. It was a revelation - I was in
programmer heaven. From then on, my programming experience changed for the better. The
AtmelStudio learning curve turned out not to be steep at all - I was operational in no time.
What is more, I developed a technique to easily switch from the Arduino IDE to AtmelStudio
and vice versa with little effort. It was just a matter of activating one of two macros (#define
ATMEL_STUDIO or #define ARDUINO_IDE). You will find full details on the AtmelStudio/Arduino IDE
interoperability framework in the companion book Defensive C++ Arduino Programming.
Since there were other possible IDEs, I looked at PlatformIO, Visual Studio, Visual Micro, and
Code::Blocks, just in case they proved to be an improvement over AtmelStudio. PlatformIO is a
formidable tool in that it supports Arduino, ESP32, and other microcontrollers. It also supports
hardware-based debugging (in a limited way for Arduino), and teamwork configuration
management via external tools. As for Code::Blocks, it looks somewhat like AtmelStudio, but
the similarity ends there. I was not able to import an existing Arduino project into it. It might be
possible, but it looks like being a real hassle. I consequently stopped testing it. This being said,
there might be a solution which requires doing a little research. I shall conclude by saying that
I found AtmelStudio (and later Visual Studio/Visual Micro) user-friendly and powerful enough
for my requirements. You will find short descriptions of these tools in their respective short
introductory chapters. See AtmelStudio (page 6), Visual Micro for MicrochipStudio (AtmelStudio)
(page 6), Visual Micro for Microsoft Visual Studio (page 6), PlatformIO (page 6), and Code::Blocks
(page 6). These five tools are described in more detail in the companion book Defensive
C++ Arduino Programming (see Bibliography page 6).
But walk before you run. For a more detailed presentation of the Arduino solution see Arduino
IDE (page 6). This chapter, Arduino and C++, covers the following themes:
•	 A short history of C and C++ (page 6) - In the old days, computer manufacturers like

IBM (mainframes), Digital Equipment (VAX computers), and others created their own
operating systems and programming languages. This means that once a business
decided upon a specific computer, it got locked in as its applications could not be ported
to other computers. The need for a portable operating system and programming language
combination became pressing. MIT worked on such a system (multics) - Bell Labs did
more work on it to finally produce Unix and the C language. Later on, Bjarne Stroustrup,
while working on his PhD thesis, came up with an object-oriented extension to the
C language; he later named C++.

•	 C++ programming (page 6) - As Unix proliferated, mainly on large computers (PCs and
Macs were relegated to being desktop computers), the C language became a standard
for developing mission-critical applications. It however quickly became apparent that C
programming (procedural programming) was a painstaking non-programmer-friendly
way of developing applications. The price to pay was complexity. The aha moment of
the industry was "Let programmers create their own user-defined types" (dixit Bjarne
Stroustrup) and this is how C was enhanced to being C++.

•	 Microcontrollers (page 6) and the CPU which drives your PC are really one and the same
electronic device type in that they are conceived to be programmed, i.e., intelligence

6 | Chapter 1 - Arduino and C++

can be programmed into them. However, the term microcontrollers refers to embedded
devices such as in cash registers, in my beehive weighing system, etc. For small DIY
projects, Arduino (Atmel 8-bit architectures) is an excellent choice.

•	 Programming languages (page 7) - When choosing a programming language, a host of
considerations come into play: programming ease, application speed and compactness,
programming languages you already know, etc. Most of the time, the choice is a
compromise between several opposing criteria. C++ excels when application speed and
compactness are crucial. It is however a time-consuming language to program with as
compared to Python.

•	 Which chip/language combination? (page 7) - Choosing a programming language and a
chip to build an application on are interrelated. It all depends upon what you know and
your priorities. The three main chips one would consider for small DIY projects are
Arduino (Atmel 8-bit chips), RaspberryPi, and ESP32. And then you would short list
C++ and Python as the programming languages. That is six chip/language combinations.
Which one to opt for? I personally chose Arduino/C++ mainly because I wanted the
smallest, fastest applications, even though this choice would cost me extra development
time.

•	 What defines C++ (page 7) - Having settled on C++ as the programming language, the
questions are: What is it? What does it look like? How does one use it? What can it do for
you? One should start by looking at C, how it differs from other programming languages
by providing the programmer features not generally available elsewhere such as a
preprocessor (macros), direct work on memory addresses, bit-level manipulations, simple
syntax, rich set of operators, etc. Once you have gotten a grasp of the C language, add
object-oriented programming (user-defined types) and voilà, you understand what C++ is.

The pages which follow cover the above, the nitty-gritty of C++ programming (see What one
needs to master page 7).

1.1  A short history of C and C++
In the old days, computers were programmed in machine language by way of an assembler.
It transformed source level machine instructions into machine code - it assembled machine
instructions, hence its name. Such programming proved to be extremely time consuming but
there was no other way. Let me illustrate machine language.
Suppose you wanted to do a simple addition such as

c = a + b
The above is classic source code in just about any programing language. The machine language
equivalent would look like this:

Transfer content of memory location A to register 1
Transfer content of memory location B to register 2
Add contents of register 1 to register 2
Transfer content of register 2 to memory location C

One line in a higher-level language replaces four lines of machine language code, making it
considerably more understandable.
Writing machine language code is unbelievably time consuming, difficult to read, error prone,
and a debugging nightmare. These impediments were resolved with the development of

1.1  A short history of C and C++ | 7

higher-level programming languages to abstract away the architecture of the microcontroller.
Unfortunately, at the time, each computer manufacturer developed its own higher level
programming language - hence there was no portability across computer manufacturers.
In the mid-60s, M.I.T. started developing a multitasking operating system named multics.
Taking multics as a model, Bell Labs created Unix and the C language to develop it with - C
and Unix were meant to be portable across machines. The initial Unix operating system was
created along with an initial minimalist C compiler. C's initial characteristics included core
language features plus standard library components. Variables, return values, etc. had to be
declared as to type so that the compiler could allocate space. Individual program modules were
compiled and linked together to create an executable file. This opened the way to precompiled
library modules to encapsulate predefined functions.
From then on, Unix developers used the C language to both extend Unix and to extend the
C language and compiler - the C language was used to extend the C compiler which was then
used to extend the C language; it was meant to be both programmer friendly and general
purpose. Its basic features were flexible built-in numeric types, a rich set of operators to
manipulate the data, facilities to create complex numeric types, control flow statements, and
functions to encapsulate logic. It became a procedural programming language capable of
creating compact code which ran efficiently on many computers.
Then came object-oriented programming. Before exploring how and why it came about,
you need to understand a fundamental concept: simplicity. It is one of the keys to achieve
programmer productivity and create efficient, robust applications. Let me explain.
Procedural programming languages evolved but they still lacked features to facilitate top-down
programming (program the way one thinks). The question raised is: What is the fundamental
feature a language should have so that the programmer can write clear, readable, maintainable code?
Before reading on, think about this and try to answer the question. I personally was surprised
by the answer: Make it so that programmers could create their own types. This is what Bjarne
Stroustrup said in a recent interview. User-defined types do away with detail/clutter. It enables
top-down work - programming becomes cleaner. Start by laying down the overall architecture
and later on, fill in the details (bottom-up programming).
Procedural programming languages do sort of support user-defined types. Sure, you can create
a struct which in a way is a new type but that will not take you far. A C struct does not have
functions - work on its content must be handled by global functions. Imagine trying to build
entities such as boxes, spheres, and cylinders in C. You can but the logic will be spread out over
individual global functions such as

float VolumeSphere(struct _sphere);
float VolumeBox (struct _box).

Furthermore, logic is limited since there is no user type which could abstract away all the
different physical containers one might want to deal with.
User-defined types became the means whereby programmers could simplify their code. Algol
(Algorithmic Oriented Language) is the first language to implement this concept. Algol led to
Simula which Bjarne Stroustrup used as a starting point to create a C with classes language
for his PhD thesis, which he later named C++. However, he was not the only one working on
object-oriented programming. Other object-oriented programming languages came into being
in the 80s (e.g. Smalltalk and Objective C). Encapsulation enabled the programmer to enclose
related functionalities inside an entity (call it a class), a class being a programming feature

8 | Chapter 1 - Arduino and C++

which contained both data and functions to act upon the class's data.
C++ became generally available in 1985. It extends C into the object-oriented programming
realm. It is not a better C - it is a C with classes, a C with user definable types. It is C++, an
object-oriented programming (OOP) language based on user definable class definitions which
contain functions (methods) to work on the class's data. It is worth noting that an Arduino
programmer could write his/her program entirely in C - functions and variables only. However,
a sprinkling of C++ here and there will simplify code, clarify program logic, assure better
maintainability, reduce development time, and bring other desirable results.
The key points to understand are:
•	 Good code needs to be simple - simplicity makes life easier for the programmer and gives

the compiler a chance to generate efficient (fast and compact) machine code.
•	 To achieve simplicity, the programmer must be able to create his/her own types. This

can be achieved via encapsulation. It is the process of enclosing data and functionalities
inside an entity - call it a struct or a class. class specific functions manipulate the class's
data. The programmer may thus define his/her own types and use them the same way as
using ints, chars, floats, etc. See class and struct (page 9).

•	 Features such as inheritance and polymorphism enhance user-defined types (classes).
These concepts are covered further on.

•	 Strong type checking (ex. when passing parameters to functions) became an added
feature of C++. The compiler will trigger an error if you pass a char* instead of a float,
thus a safer language than the original C language.

•	 Having understood the above (the big picture), the rest is details.
C++ has evolved considerably since 1985. New features which address the needs of highly
skilled professional programmers have been added, two of which, concurrency and regular
expressions (regex), are particularly noteworthy. The current (May 2023) standard is C++20 -
C++23 is in preview phase (see Wikipedia C++)
One last item merits attention: Why the ++ in C++? Bjarne Stroustrup considered that the
++ operator, which means increment, was an accurate presentation of his enhancements to
the C language. C++ is C incremented with user-defined types (class). Furthermore, + stands
for positive and ++ is doubly so. The ++ in C++ could also be viewed as a marketing gimmick.

1.2  C++ programming
When choosing a programming language, it is often a tossup between programming ease and
other criteria. When coding for microcontrollers, code compactness is all important because
the smaller the code, the smaller the microcontroller, the smaller the cost.
If programming ease were to be the most important criterium, Python would prevail over C++.
If compactness were to far outweigh programming ease, the most efficient language would be
machine code (assembler), but this proves highly impractical as development time becomes
prohibitive. C++ programming is a good compromise in that it is programmer friendly and
generates compact code. It has been developed to enable compilers to be close to the underlying
microcontroller's architecture, yet it offers the programmer a syntax that is easy to implement
with sufficient built-in features to accomplish the most sophisticated programming tasks. If
some machine code for critical program sections were required, the programmer could resort
to inlining assembler code within the C++ code.

1.2  C++ programming | 9

From a code compactness perspective, C++ differs from Python in that C++ is a compiled
language, whereas Python is an interpreted language. C++ does not need an interpreter to
be uploaded into the microcontroller to get the program to run, such as Python requires.
C++ source code is converted into a machine executable file and then uploaded into the
microcontroller. This is why C++ code is much more compact than Python's and faster.
Historically, C, Basic, Fortran, Pascal, and other 3rd generation programming languages
provided the programmer with fundamental mechanisms common to most programming
languages: bottom-up programming. These include algebraic expressions, variables and arrays,
logical expressions, program control flow mechanisms, and mechanisms to encapsulate data
(struct in C, record in Fortran, ...) and logic (functions, methods, subroutines, procedures, ...).
Basic has evolved into Visual Basic and is extensively used for Microsoft Word, Excel, etc. related
development. Pascal has morphed into Delphi which has its own following. Fortran is still much
used by engineers despite conventional wisdom which says that it is dead. And C has evolved
into C++ (object-oriented programming OOP). Somewhere along the line, Microsoft invented C#
(C-sharp), similar to C++, specifically tailored for Microsoft .NET development.
C differs from other 3rd generation programming languages in that it was designed for the Unix
operating system. It was to be small yet provide the programmer with the user friendliness of
3rd generation programming languages (Basic, Pascal, Fortran, etc.). Designed for professional
programmers, it assumes that the programmer knows what he/she is doing. C does not protect
programmers from themselves the way Fortran does. Because of this fundamental design
feature, C requires that the programmer be good otherwise, gotchas will take their toll: array
overruns, memory corruption due to unallocated pointers, improper numeric type usage, stack
overflow, and more. These are extensively described in Gotchas (page 10).
It is well worth repeating that C++ is deceptively simple. Do not stop with learning how to write
individual lines of code. You should understand C++'s underlying concepts. This is what this
book is all about - it explains how to use the language. Adhering to the precepts presented will
increase your productivity by helping you avoid C++'s traps, pitfalls, and programming errors.
This book is meant to be a reference of C++ features you are likely to use. It also covers features
which you are unlikely to use but which you should be aware of. For a more complete coverage
of C++ features, you may consult GCC's excellent manual (https://gnu.org/software/gnu-c-manual/
gnu-c-manual.pdf). It is clear, concise, to the point. You could also read Bjarne Stroustrup's
The C++ Programming Language book, 4th edition as it is the most complete book on C++. Do
not start at page 1 and read on - skim through it, get a general understanding of its contents
so that later on you would know where to go to deepen your understanding of some specific
C++ feature. It is a big book, 1347 pages.

1.3  Microcontrollers
Microcontrollers differ tremendously from one another. The question is: Which microcontroller
should one choose for one's project? Below are a few non exhaustive features which characterize
a microcontroller:
•	 Register size - Microcontrollers can have 8-, 32- or 64-bit registers. This means that a

unit of storage may be small or large. Types such as bytes (8 bits), integers (16 bits),
long integers (32 bits), etc. are generally supported, they do not depend on the register
size. This being said, it remains a fact that the larger the register size, the faster the

10 | Chapter 1 - Arduino and C++

application.
•	 Speed - Are we dealing with mega or gigahertz? This affects the application's speed,

which may be critical when doing signal processing. The microcontroller's clock rate
and register size duo determine speed.

•	 Memory - Microcontrollers generally have three types of memory: dynamic (RAM),
flash memory (where the application, the bootloader, and PROGMEM data reside), and
EEPROM (permanent storage available to the application). See Arduino memory pools
(page 11).

•	 Ports - Does the microcontroller provide digital and analog ports? Digital is one of two
voltages: HIGH or LOW (e.g. +5V or 0); Analog is continuous between HIGH and LOW.

•	 Timers - Can the microcontroller supply time? With what resolution?
•	 Clocks - Can the microcontroller keep date/time of day? With what precision?
•	 Interrupts - Does the microcontroller support interrupts? How? Both hardware and

software interrupts?
•	 Communications protocols - Does the microcontroller support WiFi, Bluetooth, Serial,

etc.?
Here are other considerations when choosing a microcontroller.
•	 Programming languages - What languages can the microcontroller be programmed with?

C++ only? Python?
•	 Operating system - Does the application run directly once it is loaded? Or does it require

an interpreter? This has an impact on memory requirements since the operating system
or interpreter require memory.

•	 Multitasking and concurrency - Multitasking means run two or more tasks not necessarily
concurrently - the tasks could run in a round-robin fashion such as do one thing,
stop doing the one thing and do another for a while then come back to do the one
thing. Concurrency requires two or more processors so that tasks can run in parallel.
Multitasking could be done with one processor only, such as happens whenever an
interrupt triggers an ISR (interrupt service routine).

•	 Costs is often an important issue. Is the microcontroller available as a standalone or only
as part of a board? At what cost? It may be desirable to use boards such as Arduino and
RaspberryPi for development purposes, then migrate to custom made PCBs in which the
microcontroller sits alone. Is this feasible?

Many other features characterize a microcontroller. Analyzing the most common ones in detail
is beyond the scope of this book. In my humble opinion, the three most used microcontrollers
for DIY projects are Atmel microcontrollers (Arduino - available as standalone), RaspberryPi
and ESP32 (these two mainly available on boards, hence considerably more expensive).
•	 Arduino - The term Arduino refers to a family of boards originally based on 8-bit Atmel

microcontrollers, later extended to other microcontrollers along with an integrated
development environment IDE. The creators of Arduino designed a software tools/
microcontroller boards combination that is technically referred to as cross-development.
You create code on a computer and then upload the executable into a microcontroller.
There is usually no operating system. A small application (bootloader) transfers control
to the application which resides in flash memory. Instructions are then transferred

1.3  Microcontrollers | 11

from flash memory into the microcontroller's registers, one at a time, for execution.
This feature, combined with a low-level language such as C, maximizes the use of the
microcontroller.

•	 RaspberryPi is a family of boards which can be programmed in Python, C++, and other
languages. They interface with an operating system thereby enabling applications to
become full featured miniature computers, complete with keyboard, screen, and SD
card. They can be used to create terminals of all sorts such as cash registers, payment
terminals, and facilities access systems. However, RaspberryPi may be overkill for small
IofT devices and DIY devices, and it costs more than Arduino.

•	 ESP32 - Power characterizes the ESP32 since it is a 32-bit processor. It is in many ways
a super Arduino. It can even be programmed via the Arduino IDE. Because it has two
cores, it can undertake concurrency, i.e., run two tasks in parallel. Furthermore, it
supports WiFi and Bluetooth.

There are many more choices when choosing microcontrollers, it all depends upon what the
application needs to do. But the three listed above (Arduino, RaspberryPi, and ESP32) will
fulfill a majority of DIY project needs.

1.4  Programming languages
For the sake of completeness, I have listed below short descriptions and features of leading
programming languages, namely: C/C++, C# (C-sharp), Python, HTML, JavaScript, VBA, PHP,
Go, Delphi, Java, Fortran - forgive me if I left out your favorite programming language:
•	 C++ is powerful in that it generates small fast code. It has a preprocessor which turns

out to be priceless (more on that later) and there are lots of C++ libraries. Practically
all major Open-Source Software is written in C++. It has frameworks for multitasking
(task parallelization) and more. But it comes with a cost because it is fairly complex
and you are constantly introducing programming errors (inadvertently shooting
yourself in the foot), which sometimes takes forever to resolve. I should venture to say
that programming in C++ takes 3 to 5 times more time than programming the same
logic in other programming languages unless, of course, you are an expert seasoned
C++ programmer. C++'s additional programming time burden is offset by the application
being considerably more compact than had it been written with another language. This
reduces the hardware cost. Its faster execution speed could be another benefit. This
fact alone is all important when undertaking signal processing. If you are dealing with
events in the millisecond range, Python and other programming languages will not do.
Same with image processing, if you are to process a large number of data points, in the
megas or more, speed is required.

•	 C# (C-sharp) is a Microsoft programming language tied to the .NET Framework. It is
an OOP language similar to C++ and Java. It provides useful high-level features not
included in C++ such as array bounds checking, detect attempts using uninitialized
variables, static garbage collection, etc. C# can be used for embedded development via
the Microsoft .NET Micro Framework. The following is the description I found in the https://

old.dotnetfoundation.org site: "The Microsoft .NET Micro Framework is an open source
platform that enables you to manage C# applications for source constrained embedded
devices". It is fully integrated within Visual Studio. I have not tried it because I do not

12 | Chapter 1 - Arduino and C++

intend to learn C# programming at this time; but it is good to know that it exists.
•	 Python is an interpreted language - its learning curve is shorter than C++'s. It runs on

RaspberryPi therefore, if that is your platform, why not? It has a built-in debugging
framework which simplifies development. But Python is slower, and the code is
larger because it is an interpreted language. Source code statements are read into
the interpreter one statement at a time and executed. This means that the target
microcontroller must load the Python engine and source code, thereby occupying
precious RAM. It has other drawbacks such as neither being adapted to graphics nor to
database management nor to multitasking. If you can live with these limitations, then
program in Python. You will get your application up and running sooner than doing so
in C++.

•	 HTML (Hypertext Markup Language) is what makes Web pages look the way they do.
It can be enhanced with Cascading Style Sheets (CSS) and with JavaScript for more
sophisticated rendering.

•	 Java - The idea behind Java is "Write once. Run anywhere!". Java is an interpreted
language as opposed to being a compiled machine code language. A Java compiler
transforms source code into an intermediate code (p-code) which is then interpreted
and run by a Java virtual machine which sits in the computer running the code. It is
object-oriented much like C++. It is widely used. The Arduino IDE V1, for example, is
written in Java. At this juncture, I know of no Java virtual machines for the common
microcontrollers.

•	 JavaScript programming was originally developed for client-side Web development.
It is the logic behind the Web pages. One would consequently think that it is not an
embedded development programming language - this is a bad assumption. I came across
JavaScript being used for Espruino development (See Bibliography page 13). JavaScript is
also extensively used in Adobe products (InDesign, Photoshop, etc.) to automate tasks.
Create a script in JavaScript and run it instead of repeatedly opening dialog boxes to do
work.

•	 PHP applications sit on Web servers to generate custom Web pages. For example, a
hotel reservation system receives input from the user - the server receives the request,
processes it, and sends an HTML and JavaScript code response generated by a
server-side PHP program.

•	 VBA (Visual Basic for Applications) - This Microsoft specific programming language
enables automating tasks inside and between Office documents. If you have Word,
Excel, PowerPoint, or other Microsoft tools, you have VBA. It is a full-fledged
programming environment which includes most of the features of a good IDE: syntax
sensitive programmer editor, interactive debugger, real time variables display, watch
window, function calls, and more.

•	 The Go programming language is recent. A C++ programmer will be immediately at
ease with its syntax. Take a tour of the language - it contains lots of interesting built-in
features not available in C++, which makes it enticing. It even supports concurrency
(concurrency means simultaneous multitasking - parallel processing). This can
dramatically improve an application's speed if the microcontroller is multicore, and the
operating system or application supports multitasking. The Atmel microcontrollers used

1.4  Programming languages | 13

on Arduino being single core, concurrency is not an option.
•	 Delphi, aka object Pascal, is today's successor of the ubiquitous, so popular, Turbo Pascal

written by Philip Kahn back in the late 80s. One could say that C++ and C# meet the
needs of professional programmers; Fortran meets the needs of engineers; Delphi meets
the needs of general programming. It features rapid visual components drag and drop
application development. As for Delphi for Arduino, I did find some Delphi references for
creating Arduino applications; however, the process seemed somewhat complicated. At
some point in time (2017), the big Delphi news was Visualino (page 14), a rapid Arduino
drag and drop development environment built with Delphi; but this product seems to
have been dropped because it has now been six years that no work has been done on it.
My impression is that one would be better off using C++ and the Arduino IDE or some
other tool. But if Delphi is the only programming tool you know, give it try.

•	 Fortran - But isn't it a dead language??? No! Large industrial firms use it extensively
to this day. Intel proposes a Fortran compiler which it supports just as actively as its
C++ compiler. Fortran means Formula Translation - it addresses the needs of engineers.
C++ addresses the needs of professional programmers who need to write fast, compact
code. C++ assumes that programmers know exactly what they are doing. This is not the
case for Fortran - it assumes that programmers should be protected from mistakes they
might make. For example, in Fortran, array overruns cause a runtime error. In contrast,
C++ allows programmers to index an array way outside the array's limits - the program
will continue running, and eventually crash long after the damage was done.

The question remains: Which programming language should be chosen for microcontroller
development? Python, C++, or some other language? You could use Python on Raspberry or
other microcontrollers, but these carry a cost. The generated program is considerably bigger
and slower than the equivalent program written in C++. If the program were to be small relative
to the microcontroller, why not go for Python, it is an easier language to work with, but you may
fall into a trap. As your program grows in size and complexity, and memory usage becomes
an issue, you might be forced into a serious rethink. In a nutshell, C++ is the programming
language of choice to bring hardware costs down. The smaller the program, the smaller the
microcontroller to do the job, the lower the cost.

1.5  Which chip/language combination?
I have introduced C and C++ because they have been all-important in embedded microcontroller
application developments. Although microcontroller C++ development has been historically
reserved for professionals, the past 10 years has seen a proliferation of new chips and
programming environments which has brought both the learning curve and cost down. Today,
you may choose one of several microcontrollers and languages to program them with. You
will be faced with several options, such as Arduino, RaspberryPi, ESP32, WiPy, Espruino and
others, and two mainstream programming languages: C++ and Python.
There are other programming languages (short review above) but, for microcontroller
development, C++ and Python constitute the short list. Choosing the microcontroller first
and then choosing the programming language or vice versa poses a dilemma. If you choose
C++, you can opt for Arduino development and other microcontrollers. If you choose Python
or other languages, Arduino may prove problematic. It all hinges on the application's

14 | Chapter 2 - Arduino and C++

requirements and what you are comfortable with. For example, the Arduino IDE can output
machine code from C++ for a limited set of microcontrollers. MicroPython has interfaces for
more microcontrollers (RaspberryPi, WiPy, Espruino boards, ESP32, ESP8266, and there is
some support for the Arduino Atmel series).
The question remains: Which chip/language combination? Here are some considerations:
•	 What you already know - You may be a seasoned Python programmer and learning

another language may prove to be a daunting task which you do not want to embark on.
You may want to choose a microcontroller compatible with what you know.

•	 Hardware costs ultimately depend on the microcontroller choice and size, but it is a
given that the smaller the microcontroller, the lower the cost.

•	 Microcontroller features - You may require features available on certain microcontrollers
only, such as concurrency, multitasking, multiple hardware serial ports, digital and
analog ports, power output, low power consumption (sleep and active), clock, interrupts,
memory, etc.

•	 Language features - Your gizmo may require specific features easily implemented by some
languages and not by others. Concurrency, supported by the Go language and recently
by C++, come to mind. In general, most languages support the same features - what you
can do with one, you can do with another, which means that language features are
generally not an issue.

•	 Development time - This can be an issue as you will certainly spend considerably more
time writing and debugging C++ programs than Python programs.

•	 Devices, sensors, hardware support - Your gizmo may interface with a variety of sensors.
Your search in GitHub for 3rd party libraries which support your devices may dictate
your microcontroller/language choice. If you do not know what GitHub is, do yourself a
favor, go to github.com - you will discover archives of development software to meet just
about every imaginable need.

•	 Development environment - Is there a development environment for your microcontroller/
language combination? Is it user-friendly? Is it robust and reliable? Does it generate good
code?

•	 Futureproofing your knowhow - Make sure that the language and microcontroller
combination you choose is evolving and that it is experiencing increasing adoption.

•	 Employment - Why not choose a microcontroller/language combination which has real
employment opportunities?

When deciding upon a microcontroller/language combination, each of the above will carry
some weight. In my case, I chose Arduino with C++ due to the following:
•	 Devices, sensors, hardware support for the components I needed were available (GSM

board, DS3231 clock, DTH22 temperature/humidity sensor).
•	 Arduino costs (board and microcontrollers) being ridiculously low could not be ignored.

Furthermore, alternative Arduino microcontrollers (ATmega2560, ATmega328P, Nano,
and others) enabled me to adapt the microcontroller to the application's requirements.
Low hardware costs were an important factor.

•	 The Arduino IDE is user-friendly and had just enough features for me to get started. It
is only later on, as I honed my skills, that I switched to AtmelStudio (and later Visual

1.5  Which chip/language combination? | 15

Studio/Visual Micro) - it improved my productivity tremendously. See Other IDEs (page
16) and the companion book Defensive C++ Arduino Programming which fully describes
using them.

•	 Current knowhow - I have programmed in C++. The learning curve was consequently not
a factor - I just needed some refreshing. I did consider using Python since I should be
more productive, but since C++ created considerably more compact (also faster) code and
Python support for Arduino at the time seemed to be experimental - choosing Arduino
with C++ was a no brainer.

Arduino's ubiquity was an important reason for my choosing it. The likelihood that it might
become obsolete seemed far off in the distant future - I qualify it as being futureproof. There
are more than 200,000 Arduino libraries which cover just about any device a developer might
need. Arduino being the number one choice among possible microcontrollers (RaspberryPi,
ESP32, and others), libraries get created for Arduino first, then progressively for other
microcontrollers. Searching GitHub with the keywords Arduino, RaspberryPi, and ESP32
yielded the following:

GitHub search Nov. 2019 Dec. 2020 % increase Oct 2021 % increase

Arduino 159706 194839 22% 221844 14%

RaspberryPi 12682 15607 23% 17821 11%

ESP32 9982 18497 85% 26720 14%

Table 1.1 - GitHub products for Arduino, RaspberryPi, and ESP32 - 11/19, 12/20 and 10/21
My research of GitHub libraries yielded interesting results. The most immediate conclusion
is that there is from five to ten times more content for Arduino than for Raspberry Pi and for
ESP32. Furthermore, over a one year's span (2019 to 2021), ESP32 GitHub tools increased by
85%, 15% the following year. The first year witnessed a lot of new stuff for it as it was a new
microcontroller. As for Arduino and RaspberryPi, they increased by 14% and 11% respectively
which reflects a mature environment.

16 | Chapter 2 - Arduino and C++

A note on the book's source code
 Frameworks source code: You may download the complete as is source code from https:// md-dsl.fr/c-ar-
duino-programming, modify code to your heart's content, and use it free of charge at your own
risk on a non-commercial or commercial basis. It is subject to an MIT open-source type license
agreement with some restrictions, as follows:

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to incorporate it inside of
an executable or other machine language component without restriction for personal
or commercial use. The Software may not be redistributed as source code or in any
recognizable human readable form in any form whatsoever for any use whatsoever.
The Software is the property of Michèle Delsol (France), copyright 2023, USA and
international. For any questions concerning use of the software contact Michèle Delsol at
CPParduino@md-dsl.fr.
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Note that some frameworks have benefited from extensive development work, and they are
quite solid; others are in their infancy and may be buggy.
You will find, throughout this book, code snippets, classes, functions... to illustrate how C++
works. They cover a lot of material. Some of them are short and to the point; others are longer
and can be more or less complex. I have tested all of them, at least I think I have, which means
that you might find omissions, mistakes, inaccuracies... If you happened to come across such
failings, please send me an email at cppArduino@md-dsl.fr explaining what it is you think is
wrong. I shall look into it, try to respond, and bring in corrections for the next edition of this
book, currently 1st edition.
My Web site account contains the frameworks, and Awk and Perl programs presented in
these two books. To download these, go to https:// md-dsl.fr/c-arduino-programming (a little over 1.5
megabytes).
You will also find notes and acknowledgements as to events concerning these two books in my
Web site https:/http;// md-dsl.fr.

A note on the book's source code | 17

This page intentionally left blank

18 | Chapter 1 - Arduino and C++

About the author

T he author, Michèle Delsol, born in France, educated in the USA (MIT - B.Sc., Sc.D.),
now retired and living in France, has worked in industrial firms in South America,
the USA, and France. For the last 25 years of her career, she was CEO and CTO of the

company she created. As CTO she gained experience working with Fortran, Forth, Lisp, Java,
JavaScript, Visual Basic, PHP, HTML, and C++.
Not shying from rolling up her sleeves, she is practical and dives into hands-on work. Her
passion for flying led her to build and fly her own airplane (RV8). She also claims some artistic
capabilities (the warthog and marmoset on the covers of this two-book tandem are hers), did
some acting (theater), and is now an enthusiastic beekeeper.
Her most recent electronics endeavor is an Arduino-based beehive weighing system to help monitor
her bees' wellbeing (full details in the author's book Defensive C++ Arduino Programming - see
Bibliography - C/C++ programming (page 263). It began as a back of the envelop idea which grew
into a full-fledged system. As the project progressed, from proof of concept of the individual
components to a comprehensive integrated system, the application grew to more than 35
files (15,000 lines of code). Her early development was fairly undisciplined and incremental,
which led her to too much time debugging - what was initially an enjoyable pastime became
a gruesome burden. She consequently stepped back and researched why programmers make
mistakes. She found that she needed to adopt good programming practices and use better tools.
It brought her to switch to AtmelStudio (later to Visual Studio with Visual Micro) in lieu of
the Arduino IDE, to extensively review C++, to create frameworks to handle specific tasks, to
relearn adequate Awk and Perl to extract documentation from the source files, to learn regular
expressions, and to undertake other useful programming chores.
This experience led her to write extensive notes on the material she covered to keep track
of things as literature and the Internet teemed with too much material, most of which was
unprofessional, verbose, and did not address the question posed directly. Ask a simple question,
get long complicated responses. These notes gradually morphed into two books: Pragmatic
C++ Arduino Programming, a reference work to help already C++ savvy Arduino programmers
avoid the many gotchas C++ can throw at them, and Defensive C++ Arduino Programming which
presents C++ tools and frameworks to improve programmer productivity to write efficient,
robust, maintainable, and compact Arduino applications.
Her Arduino-based beehive weighing system is not quite finished. Future work would focus on
transferring her project to an Open Source Software team, on redesigning the PCB for SMT
technology, on implementing alternate communications to handle remote areas where GSM
is not available, on developing Web and smartphone based user-friendly interfaces, and more.
Whether these will be undertaken remains to be seen since she has other projects she intends
to work on. Amongst the many ideas that float in her mind, a device to detect Asian wasps
hovering in front of the beehives. She also plans to interpret a colony's activities via the sound
they make. These projects are a tall order - they imply learning and implementing digital signal
processing, digital image processing, and AI. These should keep her busy for years to come.
Needless to say, she is never bored. Aside from the shared benefits that beekeepers might gain
from her hard-won endeavors, her ongoing satisfaction lies in the challenge and the doing.

19

This page intentionally left blank

20 | Chapter 2 - Arduino IDE

 Index table | 21

Index table
Symbols
++ See Prefix/postfix operators (++/--)�
+ plus sign

=- instead of -= or =+ instead of += - gotchas�  221
+ plus symbol

+a - unary plus (affirm positive)�  65
a+b - add�  65

<, <=, >, >= operators
Less than, less than or equal with, greater than,

greater than or equal with�  65
<< and >> bit shifts operators

Bit shifts left and bit shifts right�  65, 70
< left chevron symbol

<<=, >>= cumulative bit shift left, bit shift right
�  65

= equal sign
+=, -=, *=, /=, %= operators - cumulative add/

subtract, multiply/divide, modulo�  65
==, != operators - equal with, not equal with�  65
=- instead of -= or =+ instead of += - gotchas�  221

> right chevron symbol
<<=, >>= cumulative bit shift left, bit shift right

�  65
~ tilde

~ bit NOT operator reverses bits�  65, 70
! ~ negation , also used in bitwise not�  65

3rd generation programming languages See Pro-
gramming languages�

255 values
Noise (255 values) in transmission filter out�  284
Use 255 base instead of 8-bit 256 base�  284

& ampersand
&, ^, | bit-level AND, XOR, OR�  65
&=, ^=, |= bit-level logical self comparisons�  65
&, |, ^, ~ bit-level AND, OR, XOR, NOT�  70
&&, ||, ^ logical operators AND, OR�  65
&a - address of variable a�  113
& instead of && and | instead of || or vice�  221

/*...*/ and //... See Comments�
\ backslash symbol

\" double quotes escaped�  52
\n, \t, \f (new line, tab, form) - escape sequences

�  52
Write macro on several physical lines�  171

__brkval and __flp
System vars define fragmented memory�  83, 164

(cast) operator
cast such as (uint8_t) myVal�  65

: (colon uses)
>:0 - start at byte boundary - bitfields�  94
:1 - pad 1 bit - bitfields�  94
Bitfield size such as int myBitfield : 3;�  69
Colon : used in 'for (int valItem : floatArray)'�  75
? : - conditional if true/false�  65
Conditional operator ? : contains colon : �  69
Enumeration size specifier : uint8_t {...};�  69
for (index : array) {...} index is control parameter

�  75
Identifies a label statement�  76
Inheritance derivedClass : public baseClass�  69
Initializer list myClass() : val1(0), val2(10)�  69
: used to define enum item type�  97

.cpp files (code files) See Header files (.h) and code
files (.cpp, .ino)�

#define, #undef See Macros (#define)�
:: (double colon uses)

namespace scope :: resolves name clashes�  38
::new - global new�  163

#error See Macros (#error)�
! exclamation mark

==, != operators - equal with, not equal with�  65
! ~ negation , also used in bitwise not�  65

-f flags (compiler options)
-flto flag (link time optimization)�  25
-fno-exceptions flag in platform.txt�  147
-fno-rtti and -frtti flags (variable type info) Arduino

unsupported�  224
-fpermissive required by Arduino�  25, 202, 234

__FILE__
Current source file�  83, 182
Full path consumes too much memory�  191

__FILE__, __FUNCTION__, __LINE__
System variables�  83

__flp and __brkval
System vars define fragmented memory�  83, 164

/ forward slash
+=, -=, *=, /=, %= operators - cumulative add/

subtract, multiply/divide, modulo�  65
/ forward slash symbol

*, /, % operators - multiply, divide, modulo�  65
-fpermissive flag (compiler leniency) See Permissive

flag (compiler leniency)�
__func__ (deprecated) See __FUNCTION__�

22 | Index table
__FUNCTION__

Compatible with F() macro�  188
Current function�  83, 182

.hex (image) See Executable file�

.h files (header files) See Header files (.h) and code
files (.cpp, .ino)�

#ifdef...#elif...#else...#endif See Macros (#ifdef...#e-
lif...#else...#endif)�

#if defined (...) See Macros (#if defined (...))�
#ifndef...#endif See Macros (#ifndef...#endif)�
#include See Macros (#include header file)�
.ino files (sketches)

Arduino name for C++ entry file�  103
Header files (.h) and code files (.cpp, .ino)�  103
.ino files are ordinary C++ files�  40

__LINE__
Current line no. in source file�  182
Current source line�  182

#, ##, /**/ macro operators
Macro stringizing, concatenation, separation�  177

- minus sign
+=, -=, *=, /=, %= operators - cumulative add/

subtract, multiply/divide, modulo�  65
=- instead of -= or =+ instead of += - gotchas�  221

- minus symbol
a - b - subtract�  65
-a - unary minus (affirm negative)�  65

, operator
Sequence expressions (comma operator)�  65

? : operator
Conditional if true/false operator�  65

*, & operators
Dereference a pointer or define one, address of a

variable�  65
& operator See Address '&' operator, reference type

qualifier, bit level AND operator�
{...} operator See Curly braces�
() parentheses

() parentheses defines function - int myFunc()�  57
() parentheses groups expressions�  65

% percentage symbol
*, /, % operators - multiply, divide, modulo�  65

#pragma See Macros (#pragma)�
& reference qualifier See Reference qualifier�
-- See Prefix/postfix operators (++/--)�
[] square brackets

Array [] type qualifier - int myArray[50]�  56
Overloaded index [] operator SafeArray class�  276

[] square brackets symbol
Array index operator - myArray[2]�  94

Array index [] operator overloading�  146
Array [] type qualifier - int myArray�  57, 94
[](){...} - lambda function operator�  65
throw(error) in overloaded index[] operator�  148

* star symbol
* defines a pointer�  56
*myPointer++ - is it (*myPointer)++ or

*(myPointer++)?�  225
*, /, % operators - multiply, divide, modulo�  65

* symbol
+=, -=, *=, /=, %= operators - cumulative add/

subtract, multiply/divide, modulo�  65
% symbol

+=, -=, *=, /=, %= operators - cumulative add/
subtract, multiply/divide, modulo�  65

#undef See Macros (#define, #undef)�

A
abort

Error handling�  145
Abstract classes See Virtual & pure virtual functions�
Address '&' operator

Address of as in '&a'�  113
Advanced mechanisms

Complex numbers�  150
Exception handling (C and C++)�  77, 147
Lambda functions [](){...}�  65
Templates�  125

Aliases (uint8_t, etc.)
Types (built-in)�  54

Amateurism
Doing a job without the required skills�  209
Too much debugging time�  257

Analog pins See Arduino specific functions�
AND & and && See bit-level and logical operators�
Arduino bit functions (simplify programming)

bitClear, bitSet, bitRead, bitWrite, bit(pos)�  89
bitRead(number, bit) to get a bit's value�  71
Divide by 256 for MSB or modulo 256 for LSB�  89

Arduino Builder See Code::Blocks�
Arduino configuration file See platform.txt�
Arduino development tools See Development tools�
Arduino editor

Adds 'main' behind the scenes�  40, 44
Arduino editor collapses curly braces well�  106
Auto-indenting, code collapsing not supported�  22
Error message lost in reams of output�  200, 254
Good C++ editor but could be better�  21, 197
#ifdef auto-indent/code collapse unsupported�  218
See Arduino IDE bugs�  197

Arduino IDE

 Index table | 23
All-in-one free user-friendly tool�  5, 19
Arduino boards based on Atmel 8-bit chips�  11
Arduino IDE's messages are not always clear�  249
Bit-level coding�  71
Complex numbers not supported by Arduino�  151
Experiment with arrays to find code size�  282
Preprocessor, powerful text processing tool�  20
See Arduino IDE tool chain�  19
Warnings on�  224

Arduino IDE alternatives
AtmelStudio, Visual Studio, Visual Micro, VS code,

PlatformIO, Code::Blocks�  32
Arduino IDE bugs

Adds unwanted curly brace�  220, 244
Arduino's segmentation fault (linker problem)

pushed me to migrate to AtmelStudio�  197, 199
Error messages and warnings�  198
Error reporting top down, errors out of sight�  254
if/else open curly brace position problem�  22
No alert on externally modified file�  198
Sketch's serial port gotcha�  198, 203, 204
Stray '\357' injected by AtmelStudio�  197
Stray '\' in macro definition�  197
Suddenly stops working (java error)�  200
Undo - ctrl-Z sabotages your work�  197, 198
Upload error need recompile�  197, 200
Will not alert you on externally modified file�  204

Arduino IDE (build)
Compile/upload uses bootloader to upload

program�  27
Arduino IDE tool chain

Arduino C++ editor�  20
avrdude (uploader)�  21
AVRlibC Atmel 8-bit specific library�  99
bootloader & program stored in flash memory�  21
Breadboard to prototype board to final PCB�  5
Compiler�  20
Debugging (hardware-based)�  21, 29
GNU C++ tool chain and avrdude�  99
Linker - creates program by assembling .o files�  20
make utility (builder utility)�  21, 26
Proof of concept - work on breadboards�  5
Python and WiPy�  16
Serial terminal�  21, 29
Several tools behind Arduino IDE interface�  19

Arduino memory pools
Bottom of RAM for global, static, system data�  154
PROGMEM for read-only variables�  98, 153, 154
RAM is volatile, flash and EEPROM remain�  154
Sizes of memory pools table�  154
Three memory pools: RAM, EEPROM, flash�  154

Arduino specific functions
Analog read and analog write�  84

Arduino bit functions�  89
Arduino port functions to manage ports�  84
Digital and analog I/O functions�  83
Digital vs analog ports�  11
Interrupts�  83
Microcontroller specific functions�  83
millis(), micros(), delay(), timers�  83, 85
Nomenclature: port for boards, pin for chip�  84
Port configuration digital/analog input/output�  84
PWM ports�  84
Random numbers�  83
Serial and stream communications�  83
Signal functions�  83
Some boards can put out analog voltages, not

UNO nor MEGA2560�  84
Use Aref port as voltage reference in analog read/

write�  84
Voltage by PWM pulse width modulation�  84

Arithmetic on array items See Ordinary arithmetic
vs. pointer arithmetic�

Arithmetic operators
+, -, *, /, % - add, subtract, multiply, divide, modulo

�  65
Arrays and indices

Array of pointers�  82
Array qualifier [] differs from pointer *�  57
Arrays auto-sized by initializations�  102, 123
Arrays group identical items�  151
Arrays group identically typed items�  94
Array type qualifier [], index operator []�  66, 82, 94
Associative containers not supported�  151
C++ building-blocks�  50
Memory corruption due to runaway index�  245
Nested array initializations�  95, 124
Number of items in array�  70, 82
One- and three-dimensional arrays�  95
Overloaded index operator[]�  101, 129, 146
SafeArray class protects from bad index�  238
Size of array passed as function parameter�  220
sizeof operator used on array�  70
Strings in array vs. corresponding enum list�  235
Type qualifier [] converts variable into an array�  79
Use subscript (index) to get value of item�  83, 95
Zero-based indexing forgotten�  220

Artificial intelligence See ChatGPT�
Assembler See Programming languages�
Assignment = as initializer See Initialization�
Associative containers See Arrays and indices�
Associativity See Precedence and associativity�
ATmega328P-Xmini, ATmega256RFR2, Atmel ICE

Debugging (hardware-based)�  29
ATmega microcontroller interrupts

24 | Index table
Atmega328P has 2, Atmega2560 has 6�  86

AtmelStudio
Advanced code management features�  32
Alerts on externally modified file�  204
Arduino IDE interoperability�  5, 32
Arduino's segmentation fault pushed me to

migrate to AtmelStudio�  199
AtmelStudio has a very good editor�  32, 282
AtmelStudio segmentation faults are benign�  200
Code navigation features�  32
Collapses and indents #ifdef, not Arduino�  216
Color syntax�  22
Compiler options�  25
Defensive C++ Arduino Programming�  32
Experiment with arrays to find code size�  282
Free download from Microchip Web site�  32
GNU C++ tool chain and avrdude�  32, 99
Importing Arduino projects is hassle free�  5, 32
Indents #ifdef, not Arduino�  218
Manage upload process�  27
Microsoft style environment�  32
Serial terminal�  29
Stray '\357' injected by AtmelStudio�  201
Supports Arduino hardware-based debug�  29, 32
Supports name completion�  22
User-friendly error reporting�  32

AUTO_CHAR_ARRAY
Adds extra null byte to terminate string�  183
Use macro to not forget end null�  240
Zero-based indexing forgotten�  240

Automatic memory allocations See Functions and
variables�

auto type qualifier
Sets variable's type automatically�  55, 79
Type checking�  219
Use auto to set type and initialize�  58

avrdude
Arduino compile/upload uses avrdude to send .hex

file to board, bootloader uploads it�  27
Arduino Uno used as ISP via bootloader�  27, 28
bootloader, located at address 0, transfers control

to program or uploads new program�  27, 28
GNU C++ compiler/linker create .hex file�  27
Program resides in flash memory (.hex file)�  27
Reset sends first program instruction to register for

program execution�  28
Uploading a program requires an in-system

programmer (ISP); bootloader does the job�  27
avrdude (uploader)

Arduino IDE (tool chain)�  21
bootloader resides in flash memory, uploads

program into the microcontroller�  27, 185
Upload error need recompile�  201

AVRLibC See Libraries�

B
bad_alloc, bad_cast

Exception class events�  149
Base class See class (base)�
Basic types See Types (basic)�
Beehive weighing system

Or how I learned from my mistakes�  207
Preface�  xix

Binary decision trees
if (condition) {...}�  74

Binary numbers See Integers, floats, etc.�
bitClear, bitSet, bitRead, bitWrite, bit(pos)

Arduino bit functions�  89
Bitfields

:0; start at byte boundary and :1; pad 1 bit�  94
Byte and word boundary�  94
class and struct�  91
enums simplify access to bitfields�  93
Pack small numbers in bitfields�  93

Bit-level coding
Arduino bit functions simplify programming�  71
Bit operators�  67
Bit shift precedence ignored bad result�  220, 241
Date and time packed data�  132
GET_BIT_VALUE_POS(data, shift)�  71

Bit-level operators
<< and >> bit shifts operators�  70
Arduino bit functions�  89
Bit-comparison, inversion, and shift (operators)�  70
Manipulate individual bits in a byte�  70
Read/set bits via AND, XOR, OR (&, ^, |)�  65, 70
Store/set bit values - three methods�  242

Bit masks
Bitfield date/time access�  133
Read/set bits via masks�  70

Bit notation
8-bit representation of 1 is B00000001 (right to

left)�  242
Bit display is zero-based�  71
Serial.print BIN (binary) print format�  88

Bjarne Stroustrup
Operator associativity not defined�  68
PhD thesis�  8
The C++ Programming Language book�  150
Where the ++ in C++ comes from�  9

Blynk for Arduino See Visual development�
Book's Web site (md-dsl.fr)

Events concerning book blogged in md-dsl.fr�  291
For comments and info, please send email to

cppArduino@md-dsl.fr�  291

 Index table | 25
Go to https://md-dsl.fr/c-arduino-programming for

a link to download most of the code in the two
books�  291

bootloader See avrdude�
Boot See Powerup�
Bottom of available RAM See Memory (heap)�
Bottom of physical RAM See Arduino memory pools�
Bottom of stack See Stack and stack frames�
Bottom-up See Top-down programming�
Breadboard See Arduino IDE�
Builder utility See Arduino IDE tool chain's make

utility�
Byte boundary See Bitfields�

C
C++ building-blocks

Arrays and indices�  50
C++ arrays are zero based�  41, 82
class and struct�  50
Code-blocks defined inside curly braces�  72
Comments /*...*/ and //...�  49
Components used to build a program�  49
Control flow statements�  50
.cpp files (code files)�  101
Create derived types via type qualifiers�  49
Data packing (bit-level)�  50
Derived type from type qualifier on basic type�  56
Enumerations (enum)�  50
Expression evaluation�  49
Functions and variables�  50
Header files (.h) and code files (.cpp, .ino)�  101
.ino files (sketches)�  101
Lambda functions can simplify programming�  143
Libraries contain most of what you'll need�  51
Operators (logical and bit-level)�  49
PROGMEM framework�  98
Statements as collection of expressions�  49
Structure declarations not nested as in C�  45
Templates - function/classe blueprint�  102
Types - built-in and user defined�  49
Unions�  50
Use PROGMEM for read-only variables�  50
What one needs to master�  2

C++ core guide lines
Do's and don'ts in C++�  xix

C++ enhancements to C
bool is C++�  39
C++ compiler triggers errors on C programs�  38
C++ enables creating user-defined types�  17
C++ is an enhanced C yet there are differences�  38
C and C++ programming almost identical�  44
C declarations in top of a file or function�  39

C functions must have different names�  120
Creating structs in C and C++ differ�  39
Enumerations (enum)�  39
extern "C" to specify legacy C code�  46
extern "C" {...} triggers explicit C compilation�  39
malloc is a function, new is a C++ operator�  39
Name mangling differentiates functions�  38, 120
namespace�  38

C++ features not supported by Arduino
Associative containers�  151
Exception handling (C++)�  150
I/O streams�  151
Multitasking and concurrency�  151
Regular expressions (regex)�  151
Standard Library and Standard C Library�  150

C++ mechanics
Array initialization�  102
C++ arrays are zero based�  41, 82
C++ has strong typing�  41
C++ is case sensitive�  41
C vs. C++�  44
Exception handling (C and C++)�  44
Functions and variables�  102
Functions do not necessarily return a value�  42
Manipulate data addresses directly�  41, 81
Name mangling differentiates functions�  120
Naming functions, variables, macros�  110
Numeric types (compatible)�  102
Object-oriented programming (top-down)�  15, 40
Operator overloading�  101, 129
Ordinary arithmetic vs. pointer arithmetic�  102
Param passing: value, address, reference�  42, 102
Polymorphism�  102
Precedence and associativity�  101
Programs are multi-module�  40, 41, 101
Put declarations anywhere before use�  39
Rules to assemble C++'s components�  40, 101
Scope (visibility)�  101
Strings�  42, 102
Type checking�  102
Types (user-defined)�  43
What one needs to master�  2

C++ programming
Akin to walking through a minefield�  209
Bjarne Stroustrup's The C++ Programming

Language book�  10
C++ is an enhanced C�  38
Compromise between programming ease and

execution speed and compactness�  9, 12
C with user-defined types�  38
Programming languages�  12
Top-down programming�  17
Which chip/language combination?�  14

26 | Index table
C++ short history

Bjarne Stroustrup where ++ in C++ comes from�  9
C's origins (multics then unix) make it unique�  7
C with classes (C++) for top-down programming�  8
Good code needs to be simple�  9
How one thinks (top-down)�  8
Inheritance�  9
Multitasking and concurrency�  9
User-defined types basis for object-oriented

programming�  8
C and C++ numeric types

Table�  54
Cascading values

Data sequence and #define�  174
catch See Exception handling (C and C++)�
C# (C-sharp)

Microsoft's C++ equivalent�  10
char constants See Constants: character, string, and

numeric�
char string and PROGMEM See Strings�
char type See Types (basic and derived types)�
ChatGPT

Alternative codding solutions with ChatGPT�  268
Artificial intelligence search tool�  36
ChatGPT writes temp/humidity program�  36
Generates code from simple design requests�  36
Kick start you application by asking ChatGPT�  268
One more tool to help you write better code�  268

C language
Procedural programming�  16

class and struct
Bitfields�  91
C++ building-blocks�  50
class and struct almost identical, use struct for

light weight data aggregates�  91
class and struct create user-defined types�  56, 91
class array initialization�  102
const functions can modify mutable variables�  61
Constructors and destructors�  91
Data encapsulation key to top-down programming

�  38, 89, 123
Inheritance�  91, 134
private/public control class items access�  91, 135

class (base and derived)
Base class stores common properties, derived class

stores specific properties�  136
Cycle through derived classes�  137
Derived class constructor initializes base class�  135
Derived class redefines base class virtual functions

�  120, 134, 136
Inheritance defines parent/child relationship�  134
Transparently cycle derived classes�  138

Virtual & pure virtual functions�  136
class (templates) See Templates (class)�
Code-blocks

Classes, functions, structures, program control
flow, etc. - program units do work (statements
enclosed in curly braces)�  72

Nameless code-blocks improves readability, saves
RAM�  72

Code::Blocks IDE
Arduino Builder (freematics): compile/run Arduino

projects�  34
Seems promising, but unable to use it as alter-

native for Arduino development�  34
Code files See Header files (.h) and code files (.cpp,

.ino)�
Code folding See Curly braces�
Cognitive dissonance and EGO

Ex: bitfields error psychologically induced�  270
One can be one's worst enemy�  260
Psychological factors�  258, 271

Collapse items See Curly braces�
Colon uses See beginning index table�
Color syntax

Arduino editor and AtmelStudio�  22
Comments

C and C++ comments (/*...*/ and //)�  49, 51
Careful with C++ comments '//' in macros�  171
Insert comments when writing code�  51

Communications See Serial Communications�
Compatible numeric types See Types (equivalent

numeric types)�
Compiler

Arduino IDE (tool chain)�  20
Converts .cpp to machine code .o�  25
Optimizes generated machine code�  26
#pragma macro sets compiler directives�  182
Semantics (vocabulary) and grammar (rules)�  25

Compiler bug?
Cannot where curly braces inbalance�  245
Compiler points far from error's position�  218
float to uint32_t problem using pow()�  238
Misleading message from enum declaration�  255
No code after label error�  236, 251
No error message on missing return�  111, 235
No warning on redefining existing variable�  227
No warnings on mixed compatible types�  121
Omitting () in function call undetected�  220, 232
Problem not detected because error is legal�  218
Unable to find a workaround for the Arduino

segmentation fault linker problem�  199
Compiler bug See Error messages and warnings�

 Index table | 27
Compiler optimizations

Circumvents weaknesses in your code�  225
Compiler optimizes your code�  225
volatile type qualifier no optimizations�  63

Compiler options
Debugging and release modes�  25
-flto flag (link time optimization)�  25
-fno-rtti flag to activate the typeid operator�  224
-fpermissive flag (compiler leniency)�  25
Optimization level�  25
Tweak the compiler to meet your needs�  25
Verbose produces extensive warnings�  25

Complex numbers
Arduino missing complex numbers class�  150
Get from GitHub or create your own complex

numbers class (easy)�  150
Operator overload to add complex numbers�  130

Concatenation operator ##
Macro concatenates items�  178

Concurrency See Multitasking and concurrency�
Conditional if true/false operator

? : operator�  65
Conditional inclusions See Macros (#ifdef...#endif)�
const and mutable

const before/after pointer * modifier�  61, 62
const_cast to modify variable declared const�  61
const functions and variables protect data�  61, 63
Functions and variables�  61, 81
mutable prevents/allows makes data modifiable

�  63
register type qualifier (deprecated) applied to

variables which impact speed�  63, 81
volatile type qualifier no optimizations�  63, 81

Constants (character, string, numeric)
C++ provides three types of constants�  49
char constant is 16 bits in C, 8 bits in C++�  46, 52
Decimal value�  52
Escape sequences�  52
Global, static, system data bottom RAM�  155
Literal string constants�  52
Numbers and literal string constants�  52

Constructors
class and struct�  91
Constructor initializes; destructor wraps up

�  39, 79, 92, 123
Constructors create instances of structs and

classes, may take parameters, no return�  92
Constructor's name same as class's name�  92
Copy constructors penalize runtime size�  118
Member initialization list�  135
See destructors�  92
See SafeArray class example�  277

WolfPack template class example�  127
Containers See Arrays and indices�
Contiguous heap See Memory (heap contiguous)�
Control flow expressions

C++ building-blocks�  50
Control flow constructs handle program logic�  73
do {...} while (condition)�  74
Exception handling (C - setjmp/longjmp)�  74
for (each) {...}�  74
for (iterate) {...}�  73
goto label�  74
if (condition) {...}�  73
Scope (visibility)�  106
Statements (if, while, etc.)�  72
switch (value) {...}�  74
try (...) exception handling (C++)�  73
What defines C++�  18
while (condition) {...}�  74

C programming
3rd generation languages�  10

Cryptic messages See Error messages and warnings�
ctrl-Z (undo) bug See Arduino IDE bugs�
cumulative bit shifts operators

<<=, >>= cumulative bit shift left, bit shift right
�  65

Curly braces
Arduino editor adds unwanted curly braces�  244
Collapse code improve code readability�  106
Comment closing curly brace�  243
Compiler cannot find error location�  243, 245
Curly brace instead of semicolon not done�  245
Curly braces {...} as initializer�  79
Curly braces define local scope�  104
Encapsulate function body in curly braces�  110
Readability is enhanced via curly braces�  106
Serial does not name type bad curly braces�  244
Unbalanced curly braces�  244

C vs. C++ See Syntax differences between C and C++�
Cycling through derived classes See Virtual & pure

virtual functions, abstract classes�

D
Data corruption See Memory corruption�
Data packing

Bit level - Use individual bits to pack data�  50, 129
Date and time packed data table�  133
Group date/time inside a few bytes�  132, 133
Group small numbers in bytes via bitfields�  131
Table of data packing into bitfields�  132

Data storage
Data pointer's value should not be zero�  227
Memory allocations must be monitored�  157

28 | Index table
unions enable memory sharing�  96
Ways to store data: automatic (function variable),

global, static, heap, stack, PROGMEM�  156
Debugging (general)

Amateurism causes extra debugging work�  257
Defensive C++ Arduino Programming�  29
Devil is in the details�  229
Why does one make mistakes?�  208

Debugging (hardware-based)
Arduino IDE 1.8.19 does not support hardware-

based debugging, V 2.0 does�  21, 29
ATmega328P-Xmini, ATmega256RF, Atmel ICE�  29
AtmelStudio supports hardware-based debugging

�  29, 32
PlatformIO does not support Arduino hardware-

based debug�  34
PlatformIO supports ESP32 hardware-based

debugging, not Arduino�  29
Debugging (print-based)

Hardware- and print-based debugging comple-
mentary�  29

Relies on extensive use of macros�  170
Selective code inclusion via #ifdef macros�  210

Declarations
C declarations - top of a file or function,

C++ anywhere before being used�  39
Declaration examples�  79
Identifier (variable must have a name)�  78
Tells the compiler how to call a function and

implement it using its stack frame�  78
Typedef synonym for complex declaration�  78
Type qualifiers in multivariable declarations must

be repeated�  223
Types (derived and user-defined)�  78
void functions�  79

Declarations vs. implementations See Header files
(.h) vs. code files (.cpp, .ino)�

Decrement/increment --/++ See Prefix/postfix oper-
ators�

Default function return type See Functions and
variables�

Defensive C++ Arduino Programming book
AtmelStudio�  32
Debugging (hardware-based)�  29
Exception handling (C and C++)�  78
Frameworks�  210
Perl and Awk extensively covered�  47
Pseudo-exception handling framework�  280
Regular expressions (regex) covered�  151
Tools and procedures to optimize programming�  1

delay() See Timers�
delete See new and malloc�

Delphi See Programming languages�
Dereferencing a pointer

Dereferencing a pointer has low precedence�  219
Dereferencing * function argument bad�  226
*myPointer++ Is it (*myPointer)++ or

*(myPointer++)?�  225
Parentheses ensure order of evaluation�  225
Pass by address�  114
Pointer arithmetic, careful with precedence�  225
Pointer wrongly passed as parameter�  219

Derived class See class (derived)�
Derived types See Types (derived)�
Destructors

Does wrap-up chores, releases memory�  39
No parameters and no return value�  92
Object's destructor does wrap-up chores�  92
See constructors�  92

Development tools
Arduino IDE�  19
Artificial intelligence (ChatGPT)�  35
AtmelStudio�  32
Code::Blocks�  34
MPLAB�  34
PlatformIO�  33
Visual development�  35
Visual Micro for AtmelStudio (MicrochipStudio)�  32
Visual Micro for Visual Studio�  33
Visual Studio�  33
VS Code (Visual Studio Code)�  33

Development tools See Artificial Intelligence:
ChatGPT�

Development tools See Visual development: Visuali-
no, Scratch, Blynk�

Devices, sensors, hardware support
Which chip/language combination?�  15

Digital and analog I/O functions See Arduino specif-
ic functions�

Digital pins See Arduino specific functions�
DOS box

Awk, Perl, grep, sed, avrdude�  204
Command line apps need text interface�  204
Windows command processor�  204

Double colon uses See :: (double colon uses) - be-
ginning index table�

do {...} while (condition)
Control flow statements�  74
Iterates at least once�  76

E
EEPROM

eeprom_write_block and eeprom_read_
block -store/retrieve data from EEPROM�  168

 Index table | 29
Flash memory�  185
Non-volatile memory�  154
Programmer can use EEPROM to store read-write

variables permanently after power-off�  154, 168
EGO See Cognitive dissonance and EGO�
Encapsulate data and functions

class and struct�  38, 91
End null See Strings�
Enumerations (enum)

C++ building-blocks�  50
class keyword used as enum scope qualifier�  97
Define low/high enum list boundaries�  97
enum EColor example�  97
Instead of #define sequence, use enums�  97
List of symbolic constants each with a value�  97
Simplify access to bitfields�  93
static_cast assigns arithmetic value to enum�  98
Symbolic numeric constants interchangeable�  97
: used as enum item type�  97
Use symbolic enums to index into arrays�  95

Equivalent numeric types See Types (equivalent
numeric types)�

Error handling
abort�  145
Cascade back to some predefined location (C and

C++ exception handling)�  145, 147
Decide what to do next�  145
Dedicated error handling function�  146
Developing logic differs from handling errors�  145
Good programming practices�  47
goto label�  76
Issue warning, continue with default�  145
Never assume anything�  129, 145
Provide info on the nature of an event�  145
Use setjmp/longjmp (exception handling)�  145

Error messages and warnings
Arduino IDE bugs�  198
Bad enum declaration error message�  255
Cryptic message following enum error�  255
Error messages can be long and cryptic�  249
Error reporting top down, errors out of sight�  254
Expected ';' before '{' - initializer left in�  249
Expected ';' before '{' - initializer left in�  252
Expected initializer before 'xyz' no ';'�  249
Expected primary expression before 'char Foo(10,

char* msg);'�  250
Expected primary expression before '}' - label

gotcha�  251
Expected unqualified-id before '{' token - missing

first '\' in macro definition�  250
Inaccessible member base class not public�  255
Invalid char(*)[4] to uint16_t�  201
Macro undefined - no parameters when called�  251

Missing backslash: no error, no warning�  213
Missing closing far from error's location�  243
No code after label error�  220, 236
No error message on missing return�  111
No warning on redefining variable�  227
Stray '\357' injected by AtmelStudio�  201
Upload error need recompile�  201

Escape sequences
Constants - character, string, and numeric�  52
\" double quotes escaped�  52
\n, \t, \f (new line, tab, form feed)�  52

ESP32
PlatformIO�  34
Which chip/language combination?�  14

Event registration
Error handling�  145

Exception class events
bad_alloc, bad_cast, out_of_range, range_error,

overflow_error, underflow_error�  149
Exception handling (C and C++)

C++ exception unsupported by Arduino�  147, 150
Control flow statements�  74
Defensive C++ Arduino Programming�  78, 280
Do extensive error checking�  147
Error context defined by jmpbuf�  78
Error handling�  145, 146, 147
Example code�  77
Exception class�  149
longjmp triggers roll back to setjmp�  77, 147
noexecpt specifies no exception thrown�  149
Replaces C++ exception handling�  73
SafeArray class does try/longjmp�  146, 279
throw added as C++ exception handling�  146
throw called by overloaded array [] operator�  148
throw (errorID) gets caught by catch�  146, 147
throw operator in C++ exception handling�  65
throw's errorID identifies individual throws�  147
throw used in SafeArray class�  279
try/throw/catch�  73
Use setjmp/longjmp instead of C++ exception

handling�  149, 279
Executable file (aka program)

bootloader resides in flash memory, uploads
program into the microcontroller�  27

Linker assembles .o files into program�  26
Program stored in flash memory�  185

Expression evaluation
C++ building-blocks�  49
Gotchas (C++)�  67, 101
Overflow/underflow in expression evaluation�  67
Precedence and associativity�  101

extern "C" {...} See C++ enhancements to C�

30 | Index table
F
Flash memory

Non-volatile memory�  154
RAM use with & without the F() macro �  189
Save RAM with PROGMEM to store read-only data

in flash memory�  98
Sketch uses 'nnnn' bytes�  157
Used to store bootloader, program (executable

file), and PROGMEM variables�  154, 185
Flash, RAM, and EEPROM sizes

Table memory pool sizes�  154
Float numbers See ints, floats, octal, hexadecimal,

binary�
F() macro

__FILE__ and __FUNCTION__�  188
Macro's mem requirements as program runs�  188
PSTR() macro for read-only variables�  189
Save RAM on Serial.prints PROGMEM�  155, 188, 191

for (each) {...}
Control flow statements�  74
Cycle through array, iteration is automatic�  75

for (iterate) {...}
Control flow statements�  74
for to while transformation�  75
Iteration controlled by an index�  73

Fragmented heap See Memory (heap fragmented)�
Frameworks See Book's Web site to download
FreeList

List of fragmented memory holes�  165
Freematics.com See Code::Blocks�
free See new and malloc�
Function ()

Type qualifier transforms variable into function�  79
Function pointers

Function pointer naming convention�  140
Typedef�  140
When to create function pointers�  141

Functions and variables
Auto allocation variables in stack frame�  82, 155
C++ building-blocks�  50
class and struct�  91
Compiler removes intermediate variables�  42
const functions and variables�  61, 81
Contiguous heap required for stack growth�  227
Default function parameters�  110
Default function return type is an int�  241
Dereferenced pointer parameter wrong�  112
Function calls via function pointers array�  140
Function copies parameter in pass by value�  111
Function () operator used to hold parameters�  142
Function parameter int[] becomes int*�  237
Function pointer example: PrintSurface�  142

Functions operate on data�  81, 109
Function stack frame at bottom of stack�  111
Function stack frame bottom of stack�  155, 167
Lambda functions [](){...}�  80
mutable allows functions to modify variable�  81
Name mangling differentiates functions�  38, 120
namespace: use variables and functions with same

name from different libraries�  144
Param passing: default value�  110
Param passing: value, address, reference�  112, 115
Pass a pointer and dereference�  111
Passing array to function requires passing array

size for index validity checks�  220, 237
Recursive functions�  165
register type qualifier (deprecated) applied to

variables which impact speed�  81
Runaway index damages system, heap, stack�  160
Scope (visibility)�  106
Specify return type otherwise function returns

int no error message�  111, 241
static qualifier�  80
strcpy, strcat, strlen, strcmp functions�  42
Typedef FPtrVoid fpHelloWorld�  141
Typedef is synonym for complex declaration�  80
Validity checks on parameters passed�  111
volatile type qualifier no optimizations�  81

Function templates See Templates (function)�

G
Generated code

avrdude uploads app into microcontroller�  21
Compiler optimizes your code�  26
Linker optimizes away unused items�  192

GET_BIT_VALUE_POS(_data, _shift)
Bit-level coding macro�  71

GitHub
Count for Arduino, RaspberryPi, ESP32�  16

Glitches See Gotchas�
Global and local scope

Global, static, system data in bottom of RAM�  155
Statements not allowed in global scope�  253
Store application wide data in global variable or

via allocations to a global array pointer�  156
GNU C++ tool chain and avrdude

Arduino IDE (tool chain)�  99
AtmelStudio�  32, 99
GNU compiler uses AVRlibC Atmel library�  99

Golden rules
Always monitor memory�  48, 153, 158, 228
Beware of cognitive dissonance (EGO trap)�  47
Check, Check, Check!�  47
Do not reinvent the wheel�  48
Encapsulate related data and functions�  60

 Index table | 31
Exploit C++ features sparingly�  47
In-line documentation is a necessity�  47
Insert comments when writing code�  51
KISS principle: or why complicate things�  48
Know yourself - listen to your body�  262
Never assume anything�  47, 129
Never end a function without a return!�  111
switch should have coded default�  76
Think!�  47, 267
Update your C++ skills (know your tools)�  47, 48

Good and bad habits
Bad habits: easy - good habits: hard�  261
Introspection and self-imposed questioning�  261
Psychological factors�  258

Good programming practices
Auto-indent systematically and check�  209
Comment closing curly brace�  243
Comment closing #endif with #ifdef�  218
Decide on error handling methodology�  47
Do not neglect program documentation�  47
Encapsulate code in curly braces�  106
Function pointer naming convention�  140
Functions should contain explicit returns�  235
Is your mental condition up to par�  209
Macros improve readability and reduce errors�  210
Make names meaningful�  25, 110
Modularize the application�  210
Prefix parameters with an underscore�  79
Professionalize your work�  46
Standardize code (names, formats, etc.)�  46, 209
Use FREE and DELETE macros to release memory

and set pointer to zero�  246
Verify that allocated pointers are nonzero�  246

Go programming language
Supports concurrency (tasks run in parallel)�  13

Gotchas (C++)
Arduino IDE adds unwanted curly brace�  244
Auto-indent reveals unbalanced curly braces or

parentheses�  220, 243, 244
auto typing gets you to lose track of variable's

type�  224
Avoid mixing numeric types�  221, 223
Bad dereferencing function parameter�  219, 226
Bad enum declaration error message�  255
C++ is a deceptively simple language�  207, 218
C++ traps and pitfalls: classic errors�  218
Call overloaded 'myFunction' is ambiguous�  253
char strings in array concatenated by mistake�  220
class's closing curly brace missing�  255
Comma instead of semicolon bad�  219, 231
Data sizes in expression do not match

�  67, 101, 219, 224
Dereferencing a pointer has low precedence�  219

Expected ';' before '{' - initializer left in�  249, 252
Expected initializer before 'xyz' no ';'�  249
Expected primary expression before 'char Foo(10,

char* msg);'�  250
Expected primary expression before '}' - label

gotcha�  220, 236, 251
First and last items of an array zero-based�  220
float to uint32_t problem using pow()�  220, 238
Forgot semicolon�  249
Function masks variable in outer scope�  219, 226
Glitches - often caused by bad pointers�  219, 227
In =+ unary + interpreted instead of +=�  212
Inaccessible member base class not public

�  134, 255
Incompatibility between function's defined and

called parameters�  126
Initializer {0} left in leads to cryptic message�  252
Invalid char(*)[4] to uint16_t�  197, 201
Lack of a terminating null thrashes memory�  240
Legal code yet programming error�  207
Legal code yet programming error�  218
*myPointer++ Is it (*myPointer)++ or

*(myPointer++)?�  225
Omitting () in function call undetected

�  219, 232, 243
One-line multivariable declarations: missing repeat

type qualifier�  219, 223, 254
Parameter declaration char* msg left in when

calling function�  250
Passing an array to a function requires passing

explicit array size for index validity checks�  220
Pointer not set to zero after free/delete�  229
Pointer used without assigning memory space

(phantom object)�  228, 229
Pointer validity not checked�  221, 227
Precedence and bit-level coding�  220
Prefix/postfix operators ++/-- misunderstood�  221
Return type does not match assignment�  223
Runaway index corrupts memory�  245
Semicolon not replaced with curly braces negligent

copy/paste�  220, 245
Serial does not name a type error�  244, 252
Signed/unsigned in expression do not match�  223
sizeof operator on array misunderstood�  70, 219
Specify function's return type otherwise function

returns int no error message�  235, 236
Specify return type otherwise function returns

int no error message�  79, 111, 220
Stack thrashes top of allocated memory�  159, 227
Stray '\357' injected by AtmelStudio�  201
Symptom when damaged section used�  202
Trace indentations backwards to find curly braces

bug�  243
Type checking leniency induced bugs�  219

32 | Index table
Why does one make mistakes�  207
Zero-based indexing forgotten�  220

Gotchas (C++) See Error messages and warnings�
Gotchas (C++ traps and pitfalls)

=- instead of -= or =+ instead of +=�  221
a = b instead of a == b or vice versa�  221
"a" vs. 'a' double quotes instead of single�  222
Do not to start number with 0 unless is octal

number such as 013 (decimal 11)�  221
if...else badly constructed (dangling else)�  222
& instead of &&, | instead of || or vice versa�  221
Missing end of statement or one too many

semicolons�  222
Gotchas (macros)

AtmelStudio color syntax detects macro bug�  181
C++ comments in macros misleading�  213
Commenting out part of a macro�  210, 213
#define tokenization creates extra spaces�  210, 212
#error gets you to look for macro definition

problem whereas the macro is fine�  181
Expected unqualified-id before '{' token - missing

first '\' in macro definition�  250
Forgot backslash in multiline macro�  210, 213, 252
Functions called in macro generate side effects

�  210, 214
Macro definition errors often undetected�  210
Macro's simplicity can cause subtle errors�  210
Macro undefined - no parameters when called�  251
One too many backslashes in macro�  210, 253
Operator precedence problem in macro�  215
Semicolon in macro gotcha undetected�  212
Stray '#' in program�  212
Tokenization in #define creates extra spaces�  212
Unbalanced #ifdef…#endif pairs�  211
Unsatisfactory macro parameters isolation�  211

Gotchas (macros) See Error messages and warnings�
goto label

Control flow statements�  74
Direct program transfers - a no-no�  76
Error handling�  76
Expected primary expression before '}' - label

gotcha�  251
goto statement�  73
Spaghetti code procedural coding nightmare�  76

Grammar (rules)
Compiler�  25
Semantics (vocabulary)�  25

H
Hardware-based debugging See Debugging�
Harvard architectures

Alternate is Von Neumann architecture�  153
Atmel and most microcontrollers - data resides in

RAM but not program�  153
Header files (.h) and code files (.cpp, .ino)

C++ mechanics�  101
class and struct declarations�  101
Compiler works on one source file at a time hence

the need for declarations (header files)�  103
Declarations enable the compiler to verify correct

parameter passing�  103, 104
Ensure header files top-down dependencies,

avoid interdependencies�  104
#ifndef avoids repeat file inclusions�  104, 176
.ino files are ordinary C++ files�  40
.ino files (sketches - Arduino's C++ entry file)�  103
Macros (#include header file)�  24, 176
Program components declared in header files (.h),

defined in code files (.cpp, ino)�  101, 103, 104
Heap (contiguous) See Memory (heap contiguous)�
Heap (fragmented) See Memory (heap fragmented)�
Heap See Memory allocations�
Hello World

If you can create and run a small program, you can
do the same with a big one, see Kernighan and
Ritchie�  xix

Smallest C program�  39
Hexadecimal numbers See integers, floats, octal,

hexadecimal, binary�
Holes (memory) See Memory (heap fragmented)�

I
if (condition) {...}

Binary decision trees�  74
Control flow statements�  74

Image (.hex file) See Executable file (aka program)�
Implementations vs. declarations See Header files

(.h) vs. code files (.cpp, .ino)�
Incremental vs. planned programming

Easy to type code without prior thinking�  267
Incremental learning�  268
The most difficult thing to do is think!�  267

Increment/decrement ++/-- See Prefix/postfix oper-
ators�

Index operator overloading See SafeArray class�
Index See Arrays and indices�
Inheritance

Base class initialization�  135
Base class stores common properties, derived class

stores specific properties�  135
class and struct�  91, 134
Colon ':' in class definition defines inheritance�  135
Defines parent/child relationship�  134
Traverse array of distinct objects�  138
Virtual and pure virtual functions, abstract classes

 Index table | 33
�  136

Initializations
Assignment = as initializer�  79
Constructor initializes; destructor wraps up

�  39, 79, 92, 123
Curly braces {...} as initializer�  79
Functions and variables�  80
Nested array initializations�  95
Parentheses (...) as initializer�  79
Static class variables initialized in global scope�  60
Use auto to set type and initialize�  58

Inlining
#define macros resemble inline functions�  170
Improve performance by inlining functions�  142
What one needs to be aware of�  129

Insidious bugs See Gotchas (C++ and macros)�
int8_t, uint16_t, etc. See Aliases (uint8_t, etc.)�
Integers, floats, octal, hexadecimal, binary

Binary numbers bit-level representation�  53
float contains integer and decimal part, integers

do not have a decimal part�  52
Hexadecimal numbers start with 0x as in 0xB, octal

numbers with 0 as in 013 (decimal 11)�  53, 221
Interoperability

AtmelStudio/Arduino IDE interoperability�  5, 32
Interrupts ISR (Interrupt Service Routine)

Attach interrupts and detach interrupts�  86
digitalPinToInterrupt --> port interrupt�  87
Internal (software) and external (hardware) inter-

rupts�  83, 86
ISR pauses current execution for critical work�  86
Port number obtained via INTx�  86
Timers�  86
Uno has 2 hardware interrupts, Mega has 6�  86

J
Java

Interpreted OOP language�  13

K
Kernighan and Ritchie

Hello World - first C program you wrote�  xix
The C Programming Language: must read�  39

Keywords
Not usable as variable names�  25
Statements (return, break, etc.)�  73

KISS principle (keep it simple stupid) See Golden
rules and Psychological factors�

L
Lambda functions [](){...}

Creates function on the fly�  79
Ex: auto myLambda = [](char _abc) {...}�  143

[] referred to as capture, accesses enclosing
function's local variables�  144

What one needs to be aware of�  129
Landing point See Exception handling (C and C++)�
Least significant byte (LSB) See Arduino bit func-

tions�
Libraries

Arduino distribution includes String class�  51
AVRlibc contains most of C Library�  51, 99
Previous libraries: Standard C Library, Standard

C++ Library, STL (Standard Template Library)�  99
Standard libraries not supported by Arduino�  150
Standard Library extensively documented in The

C++ Programming Language�  98
Standard Library includes previous libraries�  99
STL (Standard Template Library)�  99, 125

Linker
Arduino IDE (tool chain)�  20
Assembles .o files into program�  26, 101
Linker optimizes away unused items�  26
Linker removes unused items�  282
Unable to find a workaround for the Arduino

segmentation fault linker problem�  27, 199
Unreferenced symbols is undefined variable �  26

Local scope See Global and local scope�
Logical operators

&&, ||, ^ AND, OR operators�  66
! ~ negation , also used in bitwise not�  65

longjmp See Exception handling (C and C++)�
loop See setup and loop�
LSB (least significant byte) See Arduino bit func-

tions�

M
Machine code

bootloader, program stored in flash memory�  153
Compiler converts .cpp to machine code .o�  25
Instructions taken from flash memory put into

registers one at a time�  153
Macros

C++ build starts with preprocessing macros�  23
DELETE and FREE macros release memory and set

pointer to null�  183
Example macros to handle specific issues�  183
Macros can take parameters�  174
Macros enable customizing the application�  12, 172
MAX(a,b) takes two parameters�  174
Multiline macros: see Macros (multiline)�  172
Print-based debugging relies on macros�  170
Text replacements, conditional inclusions, and

assemble files together�  23, 169, 210
Macros (built-in)

34 | Index table
__FILE__, __FUNCTION__, __LINE__�  182
__func__ has been deprecated�  182

Macros (create)
Backslash for macros across physical lines�  171
Cookbook presentation on creating macros�  171
Enclose macro parameters and code in paren-

theses�  172
Macros start with a #, lie in single line�  171
No spaces after macro's name and opening parens

�  172
Macros (#define)

BUFFER_SIZE example to store a value�  174
#define can take parameters�  174
#define macro can take parameters�  23
#define macros resemble inline functions�  170
Has 5 parts: # pound sign, type, name, parameters,

macro expansion�  171
Simplify source code, improve application's

robustness, multiple development scenarios
�  170, 174

Macros (#error)
#error gets you to look for macro definition

problem whereas the macro is fine�  181
Issues compiler error, stops the build�  180
#undef to handle complex macros�  181
Verify macro coherence via #if logical macros tests

and trigger #error�  180
Macros (#ifdef...#elif...#else...#endif)

AtmelStudio indents #ifdef, not Arduino�  218
Comment #endif to match #ifdef�  217
#ifdef conditionally selects code�  175
#ifdef where is matching #endif or vice versa�  216
Long error messages from unbalanced #ifdef�  217
Macro turns off code due to bad #endif�  217
Provide open/close curly braces to find unbal-

anced/missing #ifdef...#endif�  218
Macros (#if defined (...))

Conditional inclusions�  24, 170
Create complex logical macro tests using 'defined'

and logical operators�  175
defined is a macro keyword�  175

Macros (#ifndef...#endif)
#ifndef avoids repeat file inclusions�  176, 218

Macros (#include header file)
Header files (.h) and code files (.cpp, .ino)�  24, 176
#ifndef avoids repeat file inclusions�  176
Macros (#ifndef...#endif)�  176
Pastes the content of a file�  176

Macros (logical operators)
Are macros coherent with one another?�  180
Logical operator names in clear English�  182
Macro logical operators AND/OR (&&/||)�  177, 180

Macros (multiline)
/*...*/ and // comments in macros�  172, 213
Backslash for macros across physical lines�  172, 212
Do not use // in multiline macros�  172
Forgot backslash in multiline macro�  213

Macros (operators)
Concatenation operator ##�  177, 178
Parameter differentiation operator /**/�  177, 179
Stringizing macro operator #�  177

Macros (#pragma)
Sets compiler directive�  182

Macros (#undef)
Helps create complex macro definitions�  176

main
Arduino IDE adds 'main' behind the scenes�  44
C++ program entry point�  40
setup/loop combination - Why?�  44

make utility
Arduino IDE (tool chain)�  21, 26
Builder is Arduino's name for the make utility�  26
File rebuild dependencies�  26
makefile - know what you are doing�  26
Prevents duplicate work if file not modified�  26

malloc See new and malloc�
Masks See Bit masks�
Maslow's pyramid

Physiological and safety needs, esteem, respect,
recognition, belonging, self-realization�  260

Psychological factors�  257
What drives motivation?�  259

Memory allocations (heap)
Allocation adds two bytes for allocated size�  165
Auto allocation variables in stack frame�  82, 155
Available allocation space too small�  160
Careful when allocating memory�  247
Check contiguous and fragmented memory

�  48, 153, 160, 188, 228
Constructor initializes; destructor wraps up

�  39, 79, 92, 123
Contiguous heap is top of allocated memory to

bottom of stack�  158, 160, 166
Destructors wrap-up chores, release memory�  39
ExerciseHeap reveals memory consumption�  164
Fragmented memory lies between system memory

and contiguous memory�  159
Function stack frame bottom of stack�  155, 166
Global, static, system data bottom physical RAM

�  159
Global, static, system data bottom RAM�  155
Heap: from system zone to stack�  158, 164
Heap grows upward, releases haphazard�  154, 160
How RAM use evolves�  159

 Index table | 35
Inadvertent bottom of physical RAM write�  160
malloc is a function, new is a C++ operator�  39
Memory needs using F() macro�  189
new/malloc allocate memory from the heap�  39
PROGMEM for read-only variables�  98, 153, 154
RAM partitioning�  155
Stack grabs/releases memory top-down�  154, 159
Stack thrashes top of allocated memory�  159
Store read-only variables in flash memory�  157
Total heap is fragmented + contiguous heap�  160
Upon powerup static, global, system data loaded

bottom physical RAM�  155
Use contiguous heap or largest hole in fragmented

heap�  161
Use two extra bytes in allocated space to verify

destination size]Global, static, system data
bottom�  246

Memory corruption
Adopt preventive measures�  247
Find array size with special end of array value�  245
Invalid pointers�  246
Many possible memory corruption causes�  160
Many ways to get into trouble�  245
Memory corruption: where/how to proceed�  247
No apparent cause and effect�  245
Pointer validity not checked�  221
Print gibberish, wrong values, etc.�  157, 245
Runaway index outside allocated space�  160
Runaway index thrashes return address�  245
Stack thrashes top of allocated memory�  159
String writes, missing end null�  246
Unions misuse can thrash variables�  246

Memory (heap contiguous)
Between fragmented memory and the stack

�  155, 166
How to determine contiguous memory�  161

Memory (heap fragmented)
Allocation space too small - fragmented heap�  160
__brkval top fragmented heap, __flp bottom�  164
Fragmentation ratio�  166
Fragmented memory, sum total of holes,

measured by traversing list of holes�  158, 165
Memory releases are haphazard hence heap is

Swiss cheese like�  155, 165
Total available memory fails to disclose highly

fragmented memory�  160
Memory (pools)

Flash memory is where the program (.hex file),
PROGMEM variables, F() macro strings reside�  27

Three memory pools: RAM, EEPROM, and flash�  27
Memory pools See Arduino memory pools�
Memory sharing See Unions�
Memory structure

External storage space (RAM, SD card, etc.)�  153
Failed allocations, memory fragmented �  160
Getting the address of the bottom of stack�  161
Memory available for the stack and heap�  161
RAM extension chip�  153
SD memory card�  153
System and user RAM�  160
Three memory pools: RAM, EEPROM, flash�  153
What goes where in RAM - important to know�  160

Memory (total) See Arduino memory pools�
Methods See Functions (aka 'methods' in OOP)�
MicrochipStudio See AtmelStudio�
Microcontrollers

Arduino IDE targets mainly 8-bit Atmel chips�  11
Atmel chips available standalone, Raspberry Pi, ESP

32 on boards�  11
Atmel chips based on Harvard architectures�  153
Clocks, ports, timers, interrupts, register size,

speed, memory, multitasking, concurrency�  10
Communications protocols�  11
ESP32, RaspberryPi, IofT�  12
Features which define microcontrollers�  10, 15
Operating system required?�  11
PCs, Macs are Von Neumann architectures�  153
Programming languages�  11
Reduce development cost with Arduino�  19
Which chip/language combination?�  15

Microsoft VBA See VBA�
Microsoft Visual Micro See Visual Micro�
Microsoft Visual Studio

C++ Arduino dev with MS Visual Studio�  33
C++ Arduino dev with Visual Micro�  32

Microsoft Visual Studio See AtmelStudio and Visual
Micro�

millis(), micros(), delay() See Timers�
Min/max values of built-in types

Table of numeric types�  54
Mistakes concerning this book See See Books Web

site (md-dsl.fr)�
Mixing numeric types See Gotchas (C++)�
mnemonics

typedef�  57
Modularization See Linker�
Most significant byte (MSB) See Arduino bit func-

tions�
Motivation

Maslow's pyramid�  259
Psychological factors�  273
What drives motivation?�  259

MPLAB
May be overkill for Arduino dev�  34

36 | Index table
MSB (most significant byte) See Arduino bit func-

tions�
Multidimensional arrays See Arrays and indices�
Multiline macros See Macros (multiline)�
Multiple inheritance See Inheritance�
Multitasking and concurrency

C++ features not supported by Arduino�  151
C++ short history�  9
Concurrency: run several tasks in parallel�  151
Go programming language�  13
Interrupts enable doing basic multitasking�  87
Multitasking means run two or more tasks, concur-

rently or on a time-shared basis�  151
Multitasking requires OS to swap tasks�  151
Multitasking: run two or more tasks, concurrently

or time-shared�  11
mutable See const and mutable�

N
Name completion

Arduino 2 supports name completion, not 1.9�  22
AtmelStudio, Visual Studio, PlatformIO support

name completion�  22
Name mangling See Functions and variables�
namespace

C vs. C++�  38
Grouping data together in namespace (class) key

to user-defined types top-down programming
�  38, 144

Keyword 'using' C++ namespace equivalent�  145
namespace: use variables and functions with same

name from different libraries�  144
Scope operator :: resolves name clashes�  38, 144
What one needs to be aware of�  129

Nesting
Array initialization�  124
Curly braces define local scope�  104
Recursive functions call themselves�  165

Never assume anything
Error handling�  145
Good programming practices�  47

new and malloc
Allocate memory with new or malloc?�  161
Careful: new int() and new int[] different�  231
Customize new and delete (overload them)�  162
DELETE (new) FREE (malloc) release memory & set

pointer to zero�  183, 246
Gotchas (C++)�  227
Memory allocations (heap)�  65
new/delete operators, free/malloc functions�  161
::new - global new�  163
new int() vs new int[] completely different�  219

new/malloc pointer to allocated space
�  39, 162, 227

Use two extra bytes in allocated space to verify
destination size�  246

new overloading
Error checking via overloaded new�  162
Overloaded new implements malloc�  162
size_t _allocSize to define allocation size�  162, 163
Use C exception handling (setjmp/longjmp) to

handle errors detected via overloaded new�  162
Non-volatile memory

EEPROM�  154
Flash memory�  154

NOT ~ and ! See bit-level and logical operators�
Notepad++

Good programmer multi-language editor�  21
NULLPTR

Variable initialized as null pointer�  81
null statement

';' null is simplest possible statement�  49
Solves no code after label problem�  252

Numbers See integers, floats, octal, hexadecimal,
binary�

Numeric constants See Constants - character, string,
and numeric�

O
Objective C

Early object-oriented programming language�  8
Object-oriented programming

C++ classes and structures�  91
C++ mechanics�  43
C++ short history�  8
How one thinks (top-down)�  8, 89
Simula, Lisp, Objective C, Smalltalk�  89
Types (user-defined)�  9, 17, 56
What defines C++�  17
Which chip/language combination?�  15

Octal numbers See integers, floats, octal, hexadeci-
mal, binary�

OOP See Object-oriented programming�
Operator overloading

C++ mechanics�  101, 129
Complex numbers use overloaded operators�  130
Operator overloading customizes operator�  130
Overloaded index operator[]�  101, 131, 146, 276
SafeArray template class�  276

Operator precedence See Precedence and associa-
tivity�

Operators
Build expressions and statements�  64
C++ building-blocks�  49

 Index table | 37
new/delete operators, free/malloc functions�  161
Precedence and associativity�  65, 67
sizeof is an operator�  65
Table - C and C++ operators�  65
try is an operator�  73

OR | and || See bit-level and logical operators�
Order of execution See Precedence and associativity�
Ordinary arithmetic vs. pointer arithmetic

Access array items via subscript or pointer�  124
Dereferencing a pointer�  219
Index and pointer-based array traversal�  280
Index- and pointer-based array traversal�  124, 280
Invalid char(*)[4] to uint16_t�  201
Ordinary arithmetic using sizeof(char*)�  281
Plain and pointer arithmetic differ�  124
Pointer arithmetic using sizeof(char*)�  281
Size of items in an array�  280

Other IDEs
AtmelStudio, Visual Studio, Visual Micro,

PlatformIO, Code::Blocks�  33, 34
Other IDEs See Development tools�
Out-of-bounds index See Runaway index�
out_of_range

Exception class events�  149
Overflow_error

Exception class events�  149
Overflow/underflow during expression evaluation

Careful with precedence/associativity�  224
Compiler upgrades expression to 16 bits�  225
Improper data sizes in expression evaluation�  224

P
Parameter differentiation operator /**/

Enables parameters be joined�  179
Parameter passing

C++ mechanics�  42, 102
Careful when passing array as parameter�  57
Careful with type checking leniency�  121
Three ways: pass by value, address, reference�  117

Pass by address
Address of variable via operator &�  114
Dereferencing is a computerese trick�  114, 117
Pass by address to modify external variable, pass

by reference is alternate�  114, 115
Pointer parameters�  114

Pass by reference
Alphabetical sort on a contact list saves RAM�  117
Bitfields may not be referenced�  119
Dual nature of a reference�  118
Pass indirectly with a reference cast or directly with

a reference variable�  116
Reference initialization�  118

References resemble dereferenced pointers�  118
Saves RAM when copying objects�  117
Work on external function variables�  115, 119

Pass by value
Function creates copy of parameter�  112
Parameter can be a constant, variable, function,

function pointer, Lambda function�  113
Simplest parameter passing mechanism�  112

PCB (Printed Circuit Board) See Arduino tool chain�
Permanent storage

EEPROM for read-write variables�  154
Permissive flag (compiler leniency)

Compiler options�  25
Invalid char(*)[4] to uint16_t�  202
This flag is required by the Arduino IDE�  25
Transforms errors into warnings�  25, 202
Type checking leniency�  234

PGMP
Convenience PROGMEM macro�  190

pgm_read_byte and pgm_read_word
PROGMEM framework�  187

PHP
Mainly used for Web server applications�  13

Pin or port
Port for boards, pin for microcontrollers�  86

PlatformIO
Debugging (hardware-based) for ESP32�  34
Extensive learning curve�  33
Plug-in tool for Microsoft's VScode�  33
Supports name completion�  22

platform.txt
Arduino configuration file�  25
-flto flag (link time optimization)�  25
-fno-exceptions flag�  147
-fpermissive mandatory for Arduino dev.�  25

Pointer
Array as parameter converted to pointer�  57
const pointers offer interesting possibilities�  61
new/malloc should return non-zero pointer�  162
Pointer-based array traversal�  280
Pointer differs from index yet interchangeable�  57
Pointer such as int myVal* (pointer to an int)�  57
Type qualifiers�  79
Using a pointer directly without assigning memory

space creates phantom object (bug)�  219
Pointer arithmetic vs. ordinary arithmetic See Ordi-

nary arithmetic vs. pointer arithmetic�
Polymorphism

Derived class redefines base class virtual functions
�  120

Means take on many forms�  120
Name mangling differentiates functions�  120

38 | Index table
Port or pin

Port for boards, pin for microcontrollers�  86
Ports See Arduino specific functions�
Postfix See Prefix/postfix operators (++/--)�
Powerup

Global, static, system data bottom RAM�  155
Memory allocations (heap)�  155, 159
System loads instruction from flash memory

address 0�  155
Pow() problem

Add 0.01 to the result of pow()�  239
Pragmatic C++

Introduction�  1
Practical approach to programming C++�  1
What this book is all about�  xx

Precedence and associativity
+ higher precedence than shift (<< >>) & ==�  242
Associativity: right to left, left to right�  64, 68, 101
C and C++ operators�  65, 67
Can you spot the problem in 5 == 5 + 2 == 3�  215
Dereferencing a pointer has low precedence�  219
*myPointer++ Is it (*myPointer)++ or

*(myPointer++)?�  225
Precedence first, associativity next�  64, 68, 101
Use parentheses to define evaluation order�  225
Values during expression evaluation�  68
What gets done first, add or multiply?�  65, 67

Prefix/postfix operators (++/--)
Prefix/postfix increment/decrement�  65, 106
Prefix/postfix operators are misunderstood�  106

Preprocessor See Macros�
Print-based debugging See Debugging (print-based)�
private See public�
Procedural programming

Bottom-up programming - no top-down�  8
C++ short history�  8
Characterized by functions which process data�  89
Chasm between code and thinking�  89
gotos extensively used lead to spaghetti code�  12
Many gotos generates spaghetti code�  76
Structural programming - gotos banned�  17, 76

PROGMEM (read-only data in flash memory)
C++ building-blocks�  50, 98
F() and PSTR() macros save RAM by storing data in

flash memory�  98, 153, 185, 189
PGMP is a convenience macro�  190
pgm_read_byte and pgm_read_word�  187
PROGMEM qualifier store in flash memory�  187, 193
Small program tests PROGMEM storage�  275
Store debugging messages in flash memory�  191
Store __FILE__ in flash memory�  83, 191
Store float values in flash memory�  194

Store read-only variables in flash memory�  157
Store struct and class data in flash memory�  194
Storing an array of strings in PROGMEM requires

special handling�  192
strcpy_P loads string from flash memory into RAM

buffer�  187, 193
Things not to do with PROGMEM�  190
Web sites which describes PROGMEM�  286

Program components See C++ components�
Program execution

Instructions taken from flash memory put into
registers one at a time�  153

Programming languages
Bottom-up programming�  10
C, C++, C# (C-sharp)�  12
C programming�  10
Delphi - today's version of Pascal�  14
Fortran�  14
Go programming language�  13
HTML (Hypertext Markup Language)�  13
Java, JavaScript, PHP�  13
Programming languages for Arduino�  12
Python and WiPy�  13
Smalltalk and Objective C early OOP language�  8
VBA (Microsoft's Visual Basic for Applications)�  13

Program See Executable file�
Prototype board See Arduino�
Pseudo-exception handling See Exception handling�
PSTR() macro (PROGMEM)

F() macro saves RAM on Serial.prints�  188
PSTR() macro stores variables in flash memory�  189

Psychological factors
10 commandments of EGOless programming�  260
Cognitive dissonance and EGO�  258, 271
Flaw in my thought process�  266
Good and bad habits�  258
Hobbyist's mindset�  257
How to be an efficient programmer�  258
I code therefore I am�  264
Incremental learning�  268
Incremental vs. planned programming�  259
KISS principle: or why complicate things�  266
Know yourself - listen to your body�  258
Leave the sandbox to solve the problem�  266
Maslow's pyramid�  257, 258
Memory, responsibility, patience... influence

programming performance�  271
Motivation�  273
Planning work offline important�  259, 264
Programming requires a healthy mind�  257
Psychologically induced errors�  259
Psychology of computer programming�  258
See ChatGPT - one more tool to help you write

 Index table | 39
better code�  268

Thinking is the hardest thing to do�  259, 265
To err is human�  270
Why does one make mistakes?�  208, 263

public
Class data visible from the outside�  135
private class data not visible from the outside�  135
private for data NOT visible from the outside�  135

Pure virtual functions See Virtual & pure virtual
functions, abstract classes�

PWM pins See Arduino specific functions�
PWM (Pulse-width modulation)

PWM is used to create analog-like voltage�  85
PWM (Pulse Width Modulation) See Arduino specific

functions�
Python and WiPy

Arduino IDE (tool chain)�  16
Interpreted language�  13
Which chip/language combination?�  14

R
RAM (Random Access Memory) See Memory struc-

ture�
Random numbers

Arduino specific functions�  83
Hardware driven random numbers�  88

range_error See Exception class events�
RaspberryPi

Which chip/language combination?�  14
Real world entities are the way one thinks See

C++ short history�
Recursion See Stack and stack frames�
Recursive functions See Nesting�
Reference & type qualifier

Reference an object, no need to dereference�  56
Reference & type qualifier

Address of or reference to (contextual)�  116
Reference as int myRef&�  57

register See const and mutable�
Regular expressions (regex)

Immensely useful tool not supported by Arduino
editor, supported by AtmelStudio�  151

See Defensive C++ Arduino Programming book�  151
Reset See Powerup�
Return address See Stack frames�
Return value See Functions and variables�
runaway index

SafeArray class overloads index operator []
�  245, 279

Runaway index
Gotchas (C++)�  245

Overload operator [] protect from bad index�  160
Runaway index thrashes return address�  159, 245

S
SafeArray class

Array [] type qualifier and index [] operator�  131
Exception handling (C and C++)�  146, 279
Handling runaway index�  279
Index [] operator overloading�  146, 277
SafeArray template for custom typed arrays�  277
Template for custom typed arrays�  276

Scope resolution operator ::
Accessing class items outside the class�  69
Items in a namespace�  69
Items in an enum list�  69

Scope (visibility)
C++ is a highly scoped language�  18
C++ mechanics�  101
class and struct�  106
Curly braces encapsulate switch cases�  106
Function masks variable in outer scope�  105, 219
Nameless encapsulation improves readability,

saves RAM�  106
Scope levels (curly braces nesting)�  105, 106
Variables have global or local scope�  18, 104

Scratch for Arduino See Visual development�
SD memory card

Memory structure�  153
Segmentation fault See Linker�
selective code inclusion

Use #ifdef macros for print-based debugging and
alternate dev scenarios�  210

Semantics (vocabulary)
Grammar (rules)�  25

Sequence expressions
comma operator�  65

Serial communications
DEC, HEX, OCT, BIN Serial.print modifiers�  88
Serial.begin, Serial.end, if(Serial), etc.�  88
Serial class used for serial communications�  87
Serial.print modifiers�  88
Serial.print, Serial.read, etc.�  88

Serial terminal
Arduino IDE (tool chain)�  21, 29
AtmelStudio�  29
PlatformIO�  29, 34
Visualize program behavior via Serial.prints�  29

setjmp/longjmp See Exception handling (C and
C++)�

setup and loop
Arduino specific functions�  44
Do a while(true) in setup instead of using loop�  44

40 | Index table
loop for event-based programming�  45
setup runs once, loop runs indefinitely�  40, 44

Signal functions
Arduino functions to manage signals�  83, 85
pulseIn(), pulseInLong(), shiftOut()�  85
Square wave, frequency, duration�  85
tone() and noTone()�  85

signed or unsigned See Types (built-in)�
sizeof operator

Defines memory needs of an object�  66, 70
Don't forget, sizeof is an operator�  70
Getting size of object is fraught with gotchas�  230
sizeof array - no. of items or memory needs?�  70

size_t
Address size of the target system�  64
Atmel 8-bit chips have 16 bit addresses�  64
ESP32 has 32 bit addresses�  64

Sketch (.ino file) See Arduino C++ editor�
Smalltalk

Early object-oriented programming language�  8
Source code See Book's Web site�
Spaghetti code

Excessive goto use generates spaghetti code�  12
GOTO wreaks havoc in procedural programs�  73
Many gotos generates spaghetti code�  76
Procedural programming rely on gotos�  12

Special character escapes See Escape sequences�
SRAM (Random Access Memory - RAM) See Memory

structure�
Stack and stack frames

Contiguous memory below bottom of stack�  166
Functions should contain explicit returns�  235, 236
Memory allocations (heap)�  166
Monitor function call memory requirements�  161
Out of contiguous heap space�  159
Runaway index thrashes return address�  160
Simple recursion function stack frame size�  167
Size of stack frame�  167
Stack frames added at bottom of stack�  161
Stack frames contain function parameters,

variables, return value & address�  155, 167
Stack frames function call overhead�  167
Stack frames last-in/first-out (pushed and popped

from the bottom of stack)�  158
Stack grabs/releases memory top-down�  154
Stack located in top of RAM�  158
Stack thrashes top of allocated memory�  159

Standard Library, Standard C Library, Standard
C++ Library, Standard Template Library (STL) See
Libraries�

Startup See Powerup�
Statements

Control flow statements (if, while, etc.)�  72
End with a semicolon�  49
Fundamental program units accomplish work�  72
Program is a collection of statements inside curly

braces code-blocks�  49
static

class variable to be instantiated once only�  58
Functions and variables�  80
Global, static, system data bottom RAM�  155
Old C style and new C++ usage�  58
Static class variables initialized in global scope�  60

static_cast See Enumerations�
static data See Global scope�
STL (Standard Template Library) See Libraries�
Storage specifier See Declarations�
strcpy_P See PROGMEM�
String constants See Constants - character, string,

and numeric�
Stringizing macro operator #

Macro prints variable's name instead of value�  177
Strings

Arduino distribution includes String class�  51
Break up long strings into substrings�  234
C++ mechanics�  42, 102
char* array init fail missing comma�  235
Constants - character, string, and numeric�  52
Length functions do not include end null�  122
Linker discards unused strings�  192
Missing end null cause of thrashed memory�  240
Often-used pre-defined strings�  191
Pros and cons of char strings vs. String class�  122
Several ways to manage read-only strings�  191
Store strings in flash memory with F() macro�  185
strcpy, strcat, strlen, strcmp functions�  42
Strings in bottom of RAM at startup�  155
strlen(myCharStr) & myStr.length() functions�  122
Use PROGMEM's F() and PGMP() macros�  191

Strings (zero-based indexing forgotten)
Array dimensioning macros will save you time�  241
C++ arrays are zero-based�  82
char strings end with a null�  240
N-size array, first at index 0, last at index N-1�  239
Usually first means one, not in C++�  239

Strong type checking
C++ short history�  9
Type checking leniency�  232
What defines C++�  17

Structural programming See Procedural program-
ming�

Structures See class and struct�
Subscripts See Arrays and indices�
switch (value) {...}

 Index table | 41
Control flow statements�  74
Default case not mandatory, should exist and

contain code�  76
Encapsulate cases in curly braces�  76, 106
Execution choice (case) based upon criterium�  76

Synonyms See Aliases�
Syntax differences between C and C++

C allows global duplicate declarations�  45
C and C++ handle goto differently�  46
C does not support name mangling�  45
char constant is 16 bits in C, 8 bits in C++�  46
Declare a struct within a struct (nesting)�  45
Declare a struct within a struct (struct nesting)�  45

System data See Global data�
system_error See Exception class events�
System variables

__brkval top fragmented heap, __flp bottom�  164
__FILE__, __FUNCTION__, __LINE__�  83
__flp/__brkval determine fragmented memory�  83
__func__ (deprecated)�  83

T
Tables

Data packing into bitfields�  132
Date and time packed data�  133
Declaration examples�  79
Flash memory with & without F() macro�  189
Flash, RAM, and EEPROM sizes�  154
GitHub on for Arduino, RaspberryPi, and ESP32�  16
How RAM use evolves�  159
Memory needs using F() macro�  189
Min/max to exclude 255�  284
Min/max values of built-in types�  54
Numeric types (C and C++)�  54
Operators (C and C++)�  65
Type qualifiers (C and C++)�  56

Templates
Advanced mechanisms�  125
C++ mechanics�  102
GetMinOfTwo - function template example�  125
Operator overloading�  276
SafeArray class template�  277
STL (Standard Template Library)�  125
T based template class�  128
Type independent classes and functions�  102, 125
WolfPack template class example�  127

Terminating null See Strings�
The C++ Programming Language book

14 chapters describe the The Standard Library�  150
Bjarne Stroustrup�  150
Preface�  xix

this
Address of current object, refers to self�  139, 140

class and struct�  139
Linked list�  139

throw
throw operator in C++ exception handling�  65

throw See Exception handling (C and C++)�
Timers

Arduino specific functions�  83, 85
delay() and delayMicroseconds()�  85
Interrupts�  86
millis() (50 days limit) & micros() measure time

from startup�  85
Specify delay in while statements�  76

Tool chain See Arduino IDE (tool chain)�
Top-down programming

Bottom-up characterizes 3rd gen. languages�  10
Bottom-up programming handles details,

top-down maps how you think�  43, 89, 91
C++ mechanics�  12, 40
Object-oriented programming is top-down�  8
Types (user-defined) is top-down�  56
What defines C++�  17

Total memory See Arduino memory pools�
Transmission constraints

Work-around to send data which excludes 255
values�  284

Traps and pitfalls See Gotchas (traps and pitfalls)�
try See Exception handling (C and C++)�
Type checking

auto type qualifier�  219
char* & ints compatible, char* & float NOT�  232
Extreme type checking not practical�  121, 232
-fpermissive flag (compiler leniency)�  234
Gotchas (C++)�  219
Missing parameter creates havoc�  233
Type checking leniency in parameter passing

�  102, 121, 233
Type checking leniency See Types (equivalent nu-

meric types)�
typedef

Simplifies programming by creating aliases�  57
Typedef

Declarations�  78
Function pointers�  140
Typedef FPtrVoid fpHelloWorld�  141

Type qualifiers
Array type qualifier []�  79
C++ building-blocks�  49
C++ program components�  56
Derived type from type qualifier on basic type�  56
Function () type qualifier�  79
Lambda []() creates function on the fly�  79
Pointer *�  79

42 | Index table
Table of type qualifiers�  56
volatile and register�  63

Types (basic and derived types)
Aliases (uint8_t, etc.)�  54
auto built-in type automatically sets type�  55, 79
Basic type + type qualifier ==> derived type�  53, 56
Built-in type sizes, from 1 byte to 8 bytes�  54
C++ building-blocks�  49
char types are signed - don't know why�  55
Declarations�  78
int, long, char, etc. are built-in types�  54
Numeric types (compatible)�  121
Serial.print cannot print individual extended ASCII

characters (ex. ñ) but can in string�  55
size_t returns microcontrollers address size�  55
unsigned modifiers, signed by default�  54
User-defined types enrich basic types�  56

Types (equivalent numeric types)
C++ mechanics�  102
Mixing integer and pointer parameters gotcha�  121
Numeric types equivalence concept�  121
Strong typing not carried to extremes�  121
Type checking leniency vs. strong typing�  121

Types (user-defined)
C++ short history�  8
class and struct�  56
Create programs close to how you think�  43
Object-oriented programming (top-down)�  17, 56
Simplifies programming (map how you think)�  56
What defines C++�  56

U
uint8_t, int16_t, etc. See Aliases (uint8_t, etc.)�
Underflow_error

Exception class events�  149
Underflow See Overflow/underflow in expression

evaluation�
Undo (ctrl-Z) bug See Arduino IDE bugs�
Unions

Beware, a union looks like a structure�  96
C++ building-blocks�  50
Decompose float into 4 bytes to send across a

serial port�  96
Save RAM via memory sharing�  96
Union member thrashes other member�  96, 246
What defines C++�  18

Unreferenced symbol See Linker�
uploader See avrdude�
User-defined types See Types (user-defined)�

V
Variables See Functions and variables�

VBA
Evolved from early BASIC (DOS)�  10
Word, Excel, PowerPoint, etc. programming�  13

Verbose messages See Error messages and warnings�
Virtual and pure virtual functions, abstract classes

Polymorphism�  120
Virtual & pure virtual functions, abstract classes

Derived class redefines base class functions�  136
Pure virtual functions: no code�  136
Virtual functions key to inheritance flexibility�  136

Virtual & pure virtual functions, abstract classes
Pure virtual functions: no code�  138
Transparently cycle derived classes�  137

Visibility See Scope�
Visual Basic for Applications See VBA�
Visual development

Blynk for Arduino - business oriented tool for IoT
devices�  35

Drag and drop code-blocks�  35
Scratch for Arduino - tool designed for children

who want to program�  35
Visualino - promising visual development, stopped

evolving in 2017�  35
Visualino See Visual development�
Visual Micro

Provides the upload process to Visual Studio�  27
Supports name completion�  22
Supports serial debug�  29

void functions
Specify a return type otherwise returns int�  79
void function does not return anything�  79

volatile See const and mutable�
Voltage level

Digital and analog I/O functions�  84
Von Neumann architectures

Alternate is Harvard architecture�  153
PCs, Macs program and data reside in RAM�  153

VScode See PlatformIO�

W
Warnings on

Arduino IDE�  224
Errors become warnings thus allowing build�  202
platform.txt�  202

Web site See Book's Web site�
What defines C++

C++ is a highly scoped language�  18
C enhanced with user-defined types�  16
class and struct�  18
Create compact, fast applications�  16
Direct memory access�  18
Embedded C�  16

 Index table | 43
Inheritance�  17
Object-oriented programming (top-down)�  17
Rich set of operators�  18
Strong type checking�  17
User-defined types�  56

What is a C++ program
Complete minimalist Arduino program: main

(hidden) + setup + loop�  40
Modularization (collection of .cpp modules)�  40
Starts with main, calls other functions�  40
What one needs to master�  37

What one needs to be aware of
C++ features not supported by Arduino�  130, 150
Complex numbers�  130
Data packing (bit-level)�  129
Error handling and exception handling�  129
Functions and variables�  129
Inlining�  129
Lambda functions [](){...}�  129
namespace�  129
The C++ Programming Language book�  150

What one needs to master
Arduino specific functions�  83
C++ building-blocks�  2
C++ C++ mechanics�  2
C++ enhancements to C�  37
Libraries�  51
What is a C++ program�  37

Which chip/language combination?
Arduino in short list�  14
Choosing programming language & target micro-

controller is compromise�  14
Costs and development time�  15
Devices, sensors, hardware support�  15
Employment and futureproof knowhow�  15
ESP 32, RaspberryPi, Espruino, WiPy�  14
Python and WiPy�  14

while (condition) {...}
Control flow statements�  74
while to for transformation�  75
while (true) in setup() replaces loop()�  44, 75

Why does one make mistakes?
Being careful is not good enough�  207
Inadequate offline preparation�  208
Poor physical and/or mental condition�  208
Psychological factors�  208
Tweak and test the algorithm�  208

Why I wrote this book
Programming my beehive weighing system was a

hassle�  xix
WiPy See Python�
Word boundary See Bitfields�

X
XOR ^ See Bit-level operators�

Z
Zero-based indexing forgotten See Strings (ze-

ro-based indexing forgotten)�

