

Defensive C++ Arduino Programming by Michèle Delsol

Proper names, trademarks, and designations used by the author are capitalized to distinguish
them from ordinary text. They are the property of their respective owners. The author and
publisher of this book have no intent at establishing any relationship whatsoever with the
owners of these names, trademarks, and designations.

The author and publisher have exercised due diligence as to the exactitude of the book’s content
and issue no explicit or implied warranty of any kind as to the suitability of content presented
for any purposes whatsoever and assume no responsibility for errors or omissions. The author
and publisher assume no liability for incidental or consequential damages resulting from the
use of information, code snippets, and programs presented in this book.

First published via Amazon August 2023.

Delsol, Michèle
 Defensive C++ Arduino Programming / Michèle Delsol, first edition
Copyright © 2023 by Michèle Delsol

All rights reserved. Printed via Amazon "Print-on-demand" in the United States and in other
countries where Amazon distributes this book. This book is protected by United States and
international copyright laws. No parts of this book may be copied in any form whatsoever;
permission must be obtained to reproduce parts and the entirety of this book by any means
whatsoever: electronic, photocopying, mechanical, or other.

Indexing was undertaken via JavaScript scripts applied on manually created tags. The indexing
system was created by the author.

The warthog illustration on the front cover is an original pencil and China ink drawing by the
author.

Paperback edition : ISBN 978-2-9585628-2-3
First edition published via Amazon August 2023 in paperback, hard cover, and electronic
(Kindle) formats.

ii | Defensive C++ Arduino Programming

Table of contents
List of tables and figures xi
Acknowledgements xiii
Preface xv
Introduction 1
Chapter 1 Common sense and new tools 5
Chapter 2 Why choose Arduino 7
Chapter 3 The build toolchain 9

3.1 Intelligent C++ editor 10
3.2 Make 10
3.3 Preprocessor 11
3.4 Compiler 11
3.5 Linker 11
3.6 Uploader 11
3.7 Bootloader 11
3.8 Serial terminal 12

Chapter 4 Hardware setup 13
4.1 Breadboards 14
4.2 Prototype board 15
4.3 Final PCB 15

Chapter 5 Interoperability 17
5.1 Directory structure 17
5.2 IDE specific entry files 18
5.3 Render setup/loop independent of code changes 19
5.4 Single-level directory structure interoperability scenario 20
5.5 Two-level directory structure interoperability scenario 21

Chapter 6 Which IDE to work with? 23
6.1 Dedicated IDEs 23
6.2 Plugins 23

Chapter 7 Arduino IDE 25
7.1 Arduino distribution 26
7.2 Arduino Basic features 27
7.3 Arduino IDE V2 specifics 28
7.4 Arduino caveats (legacy version 1.8.19) 30

Chapter 8 AtmelStudio 33

iii

8.1 Why adopt it for your Arduino projects 33
8.2 Missing features 35
8.3 Managing directories 35
8.4 Importing an Arduino project (AtmelStudio) 36
8.5 Upload code into the microcontroller (create external tool) 39
8.6 Interface with Arduino applications 43
8.7 Editor features 44

8.7.1 Workspace 46
8.7.2 Intelligent window scrollbars 47
8.7.3 Quick access to functions 48
8.7.4 Go to implementation 48
8.7.5 Inline function related tasks 48
8.7.6 Color coding 49
8.7.7 Inline syntax checking 50
8.7.8 Find/Replace 50
8.7.9 Name completion 51
8.7.10 Code collapsing and indentation 52
8.7.11 Collapse /*...*/ group 54
8.7.12 Group comment/uncomment 54
8.7.13 Refactoring 54
8.7.14 Compiler error reporting 55
8.7.15 Code navigation 55
8.7.16 Bookmarks 56
8.7.17 Spell-checker 56
8.7.18 Go to line number 56

8.8 AtmelStudio hardware-based debugging 56
8.9 AtmelStudio caveats 57

8.9.1 Workspace font size 59
8.9.2 Application code size (AtmelStudio) 60
8.9.3 Failure to upload code 60
8.9.4 Code changes 61
8.9.5 Second set of header files import 62
8.9.6 Quick access to functions pulldown selection box failure 62
8.9.7 Improper indenting 63
8.9.8 Failed code formatting 63
8.9.9 Segmentation faults 64
8.9.10 Errors not listed in the error list 65
8.9.11 Make utility errors not listed 66
8.9.12 Inexistant file in project not listed in error messages window 67
8.9.13 Search and replace 67
8.9.14 AtmelStudio code formatting and code collapsing bug 67
8.9.15 Auto format if...else problem 68

iv | Table of contents

8.9.16 Refusal to uncollapse a section of code 69
8.9.17 Unable to generate code for new microcontroller 69

8.10 Keyboard shortcuts 70
8.11 Documentation 71

Chapter 9 Visual Studio 73
9.1 Visual Studio features 73
9.2 Visual Studio download 74
9.3 Visual Studio 2019 vs. Visual Studio 2022 74
9.4 Visual Studio for Arduino developers 75
9.5 Visual Studio (Arduino project template) 75
9.6 Visual Studio (Visual Micro) 76
9.7 Visual Studio (debugging) 76

Chapter 10 Visual Micro 77
10.1 Visual Micro for AtmelStudio (MicrochipStudio) 77
10.2 Visual Micro for Visual Studio 78

Chapter 11 VS Code 79
11.1 VS Code features 80
11.2 VS Code installation 80
11.3 VS Code navigation 81
11.4 VS Code configuration 82
11.5 VS Code - folder vs. project 83
11.6 VS Code extensions 84

11.6.1 Arduino CLI 85
11.6.2 VS Code Arduino extension 85
11.6.3 VS Code C++ extension 87
11.6.4 VS Code serial terminal extension 87
11.6.5 VS Code PlatformIO extension 87
11.6.6 VS Code Awk extensions 88
11.6.7 VS Code Perl extensions 88
11.6.8 VS Code regular expressions (regex) extensions 88

11.7 .json files 88
11.8 VS Code caveats 89

Chapter 12 PlatformIO 91
12.1 PlatformIO Installation 93
12.2 PlatformIO features 94
12.3 PlatformIO managing projects 95
12.4 PlatformIO creating projects 95
12.5 PlatformIO project configuration (platformio.ini) 98
12.6 PlatformIO interoperability 99
12.7 PlatformIO hardware-based debugging 100
12.8 PlatformIO help and documentation 100

Table of contents | v

12.9 PlatformIO gotchas and caveats 101

Chapter 13 Other IDEs (Code::Blocks and MPLAB) 103
13.1 Code::Blocks 103
13.2 MPLAB 104

Chapter 14 Debugging 105
14.1 Avoiding bugs 106
14.2 Types of problems 106

14.2.1 Glitches 106
14.2.2 Code thrashing 107
14.2.3 Misdoings 109

14.3 Print-based debugging 110
14.4 Hardware-based debugging 110

14.4.1 ATmega328P-Xmini 112
14.4.2 ATmega2560RFR2 Xplained Pro 113
14.4.3 Atmel ICE 113

14.5 Serial debugging 116

Chapter 15 Good programming practices 119
15.1 Be consistent 122
15.2 Naming conventions 122
15.3 Code formatting 123

15.3.1 Readability 123
15.3.2 Indentation 123
15.3.3 Collapsing 124

15.4 Think 125
15.5 Document code 125
15.6 Plan your work offline 126
15.7 Never assume anything 127
15.8 Error handling 127
15.9 Project organization 128
15.10 Monitor memory use 129
15.11 Careful with lenient compiler type checking 129
15.12 Abide by the KISS principle 130
15.13 Task wrap-up phase 130
15.14 Mental condition 132
15.15 Use C++ macros 133
15.16 Define constants only once 133
15.17 Use enum lists 134
15.18 Parameter default initialization 135
15.19 Initialize using curly braces 135
15.20 Comment closing curly braces and #endif 136
15.21 Use the auto-indent feature of the editor 136

vi | Table of contents

15.22 Always start with code skeletons 136
15.23 Exploit C++ features sparingly 136
15.24 Do your homework 137

Chapter 16 Frameworks 139
16.1 Organizational Frameworks 141

16.1.1 Project Files Framework 142
16.1.2 Program Documentation Framework 144
16.1.3 Function Creation Framework 146

16.2 Data Handling Frameworks 147
16.2.1 Class Data Framework 148
16.2.2 Data Packets Framework 150
16.2.3 Format Driven float to byte Conversion Framework 152
16.2.4 DataGroup Framework 154
16.2.5 Bitfield Storage Framework 155
16.2.6 Event Storage Framework 160
16.2.7 Linked List Framework 161

16.3 Specialized Frameworks 162
16.3.1 Algorithm Test Framework 163
16.3.2 Class and Function Names Referencing Framework 164
16.3.3 Class and Function Names Referencing Framework instrumentation 166
16.3.4 Memory Management Framework 167
16.3.5 Pseudo Exception Handling Framework 172
16.3.6 Error Reporting Framework 173
16.3.7 Operator overloading 174
16.3.8 Print-based Debugging Framework 176

Chapter 17 Should know tools 179
17.1 Regular expressions (regex) 180

17.1.1 Regex terminology 182
17.1.2 Regex primer 183
17.1.3 Metacharacters and literal characters 184
17.1.4 Regex tidbits 185
17.1.5 Regex example - search for enums 186
17.1.6 Regex look ahead/behind 186
17.1.7 Regex groupings 187
17.1.8 Regex greediness 188

17.2 Awk vs. Perl 190
17.3 Awk 192

17.3.1 Awk terminology 194
17.3.2 Awk program structure 194
17.3.3 Awk conditions 197
17.3.4 Awk action-blocks 197

Table of contents | vii

17.3.5 Awk rules 198
17.3.6 Awk BEGIN and END 202
17.3.7 Awk functions and variables 202
17.3.8 Awk vs. C 202
17.3.9 Awk gotchas 203

17.4 Perl 205
17.4.1 Perl terminology 205
17.4.2 Perl primer 206
17.4.3 Perl program structure 208
17.4.4 Perl quick overview 208
17.4.5 Simulate Awk using Perl 210
17.4.6 Perl vs. C 211
17.4.7 Perl caveats 212

Chapter 18 From back of the envelope to final product 213
18.1 Tinkercad 214
18.2 Eagle 214
18.3 Fusion 360 215
18.4 3D printing 216
18.5 Fused deposition modeling FDM 217

Chapter 19 Appendix 219
Chapter 20 RAM requirements 221

20.1 Code size (IDE comparisons) 221
20.2 Code size (build options) 222

Chapter 21 DOS box (appendix) 225
21.1 DOS box - What is it? 225
21.2 DOS box launch 226
21.3 DOS commands 228
21.4 DOS batch files 228
21.5 DOS box - other info 230

Chapter 22 Frameworks (appendix) 231
22.1 Organizational Frameworks (appendix) 231

22.1.1 Project Files Framework (appendix) 231
22.1.2 Program Documentation Framework (appendix) 232
22.1.3 Function Creation Framework (appendix) 236
22.1.4 Class and Function Names Referencing Framework instrumentation (appendix) 239

22.2 Data Handling Frameworks (appendix) 241
22.2.1 Class Data Framework (appendix) 241
22.2.2 Data Packets Framework (appendix) 244
22.2.3 Format Driven float to byte Conversion Framework (appendix) 245
22.2.4 Bitfield Storage Framework (appendix) 248

viii | Table of contents

22.2.5 DataGroup Framework (appendix) 252
22.2.6 Event Storage Framework (appendix) 255
22.2.7 Linked List Framework (appendix) 257

22.3 Specialized Frameworks (appendix) 258
22.3.1 Algorithm Test Framework (appendix) 259
22.3.2 Class and Function Names Referencing Framework (appendix) 261
22.3.3 Memory Management Framework (appendix) 264
22.3.4 Pseudo Exception Handling Framework (appendix) 267
22.3.5 Error Reporting Framework 269
22.3.6 Print-based Debugging Framework (appendix) 270

Chapter 23 Misdoings (appendix) 277
23.1 = instead of == in if/while 277
23.2 == instead of = in assignment 278
23.3 switch statement empty or missing default case 279
23.4 F() macro in Serial.print missing 279
23.5 Work to do 279

Chapter 24 Memory structure (appendix) 281
24.1 Memory use macros 281
24.2 Determining memory usage 282
24.3 Highly fragmented heap 284
24.4 How do free and delete know how much memory to deallocate 284

Chapter 25 Awk (appendix) 285
25.1 Download Awk 285
25.2 Invoking Awk from a DOS box 285
25.3 Awk short example 286
25.4 Awk some features illustrated 288

25.4.1 Awk scope 288
25.4.2 Awk arrays 289
25.4.3 Awk reference 292
25.4.4 Awk command line 293
25.4.5 Awk comments 294
25.4.6 Awk rules (appendix) 294
25.4.7 Awk condition only and action-block only rules 295
25.4.8 Awk interrupt processing lines 295
25.4.9 Awk BEGIN and END (appendix) 295
25.4.10 Awk functions and variables (appendix) 295
25.4.11 Awk built-in variables 296
25.4.12 Awk program flow control 297
25.4.13 Awk operators 298
25.4.14 Awk strings 298
25.4.15 Awk print 298

Table of contents | ix

25.4.16 Awk mathematical functions 300

Chapter 26 Perl (appendix) 301
26.1 Download Perl 302
26.2 Invoking Perl from DOS box 302
26.3 Perl simulate Awk 303
26.4 Perl file handling 304
26.5 Perl subroutines (functions) 305
26.6 Perl strings 305
26.7 Perl string interpolation - single or double quotes 305
26.8 Perl lists 306
26.9 Perl program flow control 306
26.10 Perl arrays 307
26.11 Perl multidimensional arrays 310
26.12 Perl pass by reference 311
26.13 Perl built-in variables 311
26.14 Perl string functions 312
26.15 Perl importing packages 313

26.15.1 Perl variable types 313
26.15.2 Perl scope resolution operator :: and my 313

26.16 Perl text match operator 313

Chapter 27 Bibliography 315
27.1 Bibliography - C/C++ programming 315
27.2 Bibliography - PROGMEM framework 316
27.3 Bibliography - Software Engineering 317
27.4 Bibliography - Regular Expressions (regex) 317
27.5 Bibliography - Awk 317
27.6 Bibliography - Perl 317
27.7 Bibliography - Arduino 318
27.8 Bibliography - AtmelStudio (now MicrochipStudio) 318
27.9 Bibliography - Visual Micro 318
27.10 Bibliography - PlatformIO 319
27.11 Bibliography - Espruino and JavaScript 319
27.12 Bibliography - Hardware-based debugging 319
27.13 Bibliography - Programming psychology 319

A note on the book's source code 321
About the author 323
Beehive weighing system 325

27.14 Beehive weighing system architecture 325

Index table 327

x | Table of contents

List of tables and figures

Table 16.1 - Job class - Table of bitfield based variables. 156
Table 16.2 - Memory used as the application runs. 168
Table 20.1 - RAM memory and flash memory required by the
 three IDEs to run the MemMgt application with the -flto option. 221
Figure 22.1 - Test Arduino-based beehive weighing system execution paths
 with Algorithm Test Framework. 259
Table 25.1 - Weekly grocery sales 287

xi

Acknowledgements

T his book, Defensive C++ Arduino Programming and its companion, Pragmatic C++
Arduino Programming, are the result of chance encounters which led me to beekeeping
and to create Arduino-based gadgets. Put the two together and, aha! why not create

an Arduino-based beehive weighing system. That is how it all got started. And one thing leading
to another, I got into writing two books which address the needs of C++ savvy DIY Arduino
makers.
I must thank the many who contributed to my getting started on writing these books and
continuing it to its ultimate conclusion.
First in line is Daniel T. I am particularly grateful to him since he made me discover Arduino.
His electronics advice, despite his being a practicing pediatrics surgeon, hence electronics not
being his field at all, contributed immensely towards getting me started with Arduino.
And I thank Christine C., my psychoanalyst, whom I see regularly to express my little travails.
She has been an unconditional supporter of my endeavor.
And then there is Charlie H., a practicing physician and fellow airplane builder (RV8). He
introduced me to beekeeping - a few visits to his bee yard and I was hooked.
There is of course Xavier M., who purchased my company years back and who has since become
a friend. His continued support has contributed to my persevering in this book's endeavor.
My neighbors Martine and Olivier B. continuously supported my endeavors. My special thanks
to them. I must say that as the project advanced from milestone to milestone, we celebrated by
opening one or two bottles of Champagne - by now, a few cases have gone down our respective
esophagus.
As luck would have it, Allison (Olivier's daughter) is an InDesign professional consultant. I am
thankful to her as she accepted to create the print and digital ready document. She was patient
as she suffered through my unorthodox approach which consisted in creating tags in Word
which would be used by an InDesign JavaScript script to produce the finished book (layout,
cross references, indices, table of contents, etc.).
I must also thank daughter #1 Giselle, also an author, for her continued support.
Finally, but not least, I owe daughter #2 Pascale special thanks as she patiently proofread
both manuscripts, a total of four hundred plus A4 pages of tight letter size text. Since I am an
engineer, my thought process, hence sentence construction, tends to be a bit linear (somewhat
tedious to read). She managed to smooth things out and put some pep into many of my phrases.
And I thank all those others who manifested their support as they patiently heard me out as I
described my project.

xii

Preface

H ow did I come to write Pragmatic C++ Arduino Programming and Defensive C++ Arduino
Programming? The journey started due to my being an amateur beekeeper. In order
to check the health of my hives, I weigh them regularly, weekly, or daily, depending

on the season. I use an ordinary luggage scale to lift the rear of the hive. I naturally asked
myself "How about hacking an electronic Arduino-based beehive weighing system to replace my
trips to the beehives. Monitoring the weight provides an indication on the beehive's health
and how much honey is being produced. It also helps determine whether the beehive has
swarmed. Swarming means that the old queen and half the bees leave the beehive; a 6 lbs. loss
in 10 minutes.
The back of the envelope design of the Arduino beehive weighing system seemed simple. Building
such a system was the type of challenge I would enjoy. Little did I know that the electronics
would prove easy, while the software to control the electronics would be a major endeavor
which would take two+ years to complete! As I progressed on my project, I was forced into
transitioning from a hobbyist mindset to a professional programmer mindset. These two books
are the concepts, procedures, and tools which enabled me to complete the beehive weighing
system software – its size is now 35 files/15000 lines of code.
I quickly defined the general characteristics of the project: ordinary bathroom scale strain
gauges amplified by opamps, star shaped network radio communications, clocks to synchronize
the modules, a GSM board to send data to my smartphone. The deciding factors on choosing
components were cost, availability, suitability, and ease of development. The inexpensive
Arduino board, its free easy to use development environment, and C++ being the best language
for producing compact, fast, executables were the deciding factors. What's more, I already had
experience programming C++.
I then wrote code to try out the subsystems one at a time. Throughout this early dabbling, I was
impressed by the ease provided by the Arduino IDE. After experimenting with the examples,
I started my beehive weighing system with one .ino file, then, slowly but surely, the application
grew. I added .h/.cpp files, created classes, and defined macros.
I started the project by validating my choice of electronic components and experimenting with
each subsystem. And this is where the fun began. Getting subsystems to work one at a time
was easy. Getting them to work together got to be particularly time consuming. I confess that
I had unknowingly embarked on a major project with a hobbyist mindset. I soon spent much
more time debugging than coding. It got to be a painful experience.
As I progressed and the application was getting more complex, I was at the mercy of poor
planning, and I no longer controlled development. I could not continue with my undisciplined
hobbyist approach hacking out an Arduino-based gadget by coding directly, straight from
mind to code. I had to modify my ways because the application was getting unwieldy. It had
reached a size and complexity which required that I adopt formal design and implementation
techniques. If I were to bring my project to completion, I had to step back, rethink my approach,
and get organized. Furthermore, I had to update my C++ knowhow since I had become a little
rusty and was making way too many mistakes.
As luck would have it, I had already developed applications at a professional level and had

xiii

been project manager of a large industrial plant project, but that was years ago. I thought back
on that work and reviewed literature on the subject. My past experience incited me, slowly but
surely, to adopt good programming practices and to structure development. This proved to be
difficult and challenging. It demanded hard work, but the fun returned.
The foremost change in my approach was to formalize the parts and pieces of the project,
define them as individual modules, and lay them down on paper. Understanding the system's
structure from both the electronic and software standpoint led to partitioning the project into
modules. There were subsystems at the electronic level (GSM, clock, radio, EEPROM) and
there were subsystems at the software level (data storage, data validation, data conversion, data
transmission, etc.). Thanks to C++'s object-oriented features, I started the application's design
top-down. The details were to be filled-in bottom-up later on.
Informal solutions to manage certain tasks morphed into formal frameworks. Getting these
done required drawing flow charts, creating algorithms, defining functionalities, components,
and procedures. Working offline on paper proved to be a critical first step. This planning
turned out to be vital to the application's robustness, as well as to my own productivity. After
a while, the application began to take shape as pieces fell into place.
Development became a two-pronged process: design and implement the big picture (i.e., top-down
via classes and wrapper functions) and design and implement low level helper functions and
functional frameworks - bottom up. The process was iterative: go to the drawing board; work on
a module; change things; go to the computer; implement new code; test and examine results;
then go back to the drawing board. I did this until I got it right. Documenting each step helped
me learn and clarify concepts. Many hours later, I had laid the groundwork and developed
standards, procedures, and frameworks. In the process of doing this, I documented code as
much as possible for future reference.
I took notes on the causes of the various bugs I was getting (array overruns, forgetting the
end null in char strings, etc.). Then I created frameworks (file organization, register storage
of small values, extract documentation out of source files). I jotted down items of interest as I
progressed to hone my understanding of C/C++ features: adopt practical how-to procedures;
create frameworks to accomplish specific tasks; learn how to use AtmelStudio; use regular
expressions to facilitate searches; use a Perl program to produce product documentation,
one of many tasks Perl could help me with. It then dawned on me that there were amateur
Arduino developers, not professional C/C++ programmers, who could benefit from this work.
I could write a pragmatic presentation of the C/C++ know-how I had learned. This morphed into
Pragmatic C++ Arduino Programming. The defensive procedures and frameworks I had developed
became Defensive C++ Arduino Programming.
Writing these two books turned out to be as much of a challenge as designing and creating my
Arduino-based beehive weighing system. Little did I suspect, when I started putting together the
electronic components of my system, that it would take me two years to get the software done,
and that I would write two books to convey these newly acquired skills.
Knowhow, good practices, good tools, good frameworks are the keys to success. I should add
hard work to this list; success does not come free. Adopting these concepts and tools will
make you more efficient: avoid C/C++ gotchas, manage memory, make the program efficient
(small and fast), facilitate debugging, understand what you wrote months past because you
commented your code correctly, build in safeguards to protect the application as it unravels,
modify your code painlessly, etc.

xiv | Preface

Introduction

I wrote this book with the intent that it should help you, a DIY C/C++ Arduino programmer,
evolve from an amateur mindset condition into a professional one, so that you could
undertake large complex projects. Time spent adopting good practices, learning how

to use professional tools, and implementing frameworks will be amply compensated by less
debugging time, much improved adaptability to change, faster more compact code, more robust
applications, and a more enjoyable programming experience.
•	 Productivity - Get the project out faster with less pain. Programming should be fun.
•	 Maintainability - Modifications should be easy. Logic should be clear and simple.

Complexity should be reduced via encapsulation and frameworks.
•	 Robustness - The application should be free of crashes. This means not using bad pointers,

avoiding runaway memory condition leading to stack overflow or heap exhaustion, and
staying clear of other such C/C++ mishaps. You will need to hone your C++ skills. The
companion book, which dwells deeply into the why's and how's of C++, Pragmatic C++
Arduino Programming, could help you with this.

•	 Compactness and speed - Monitoring code size is important because there is a premium
on RAM. You may also need to monitor application speed if this were to become critical.

Writing small code which fits in a single sketch file differs from writing large code which needs
to be spread across files. The latter requires planning, workflow, tools, and a corresponding
mindset. If the application is small (one .ino sketch file) you could hack it out directly - mind
to keyboard: incremental programming. However, if the application is large, you should adopt
good programming practices, plan and implement procedures and frameworks, and use
professional tools. I refer to this as defensive programming. If you do not evolve from a hobbyist
mindset to a professional mindset, you will spend ages trying to get your application to work, the
danger being that you might never get it finished.
This book is a compilation of lessons learned and frameworks I developed through two years
of experience developing my Arduino-based beehive weighing system application (35 files/15000
lines of code). It covers the Arduino IDE (1 and 2), AtmelStudio, Visual Studio, Visual Micro,
PlatformIO, VS Code, Code::Blocks, and MPLAB (the last two superficially). It also covers
debugging, program organization, program documentation, frameworks, etc. Whichever
IDE you use, you can benefit from being disciplined as you work on your project and use
frameworks to manage various functional domains.
The chapter Common sense and new tools (page 1) should be read first. It presents a concise
summary of the content of this book. The chapters Good programming practices (page 1),
Frameworks (page 1) and Debugging (page 1) should be read next, they build on each other.
The remaining chapters and the Appendix (page 1) are self-explanatory. They can be read in
random order. They will most certainly influence your development choices.
The main chapters of this book are:
•	 Chapter 1 - Common sense and new tools (page 1) summarizes the main subjects covered in

this book.
•	 Chapter 2 - Why choose Arduino (page 1) - You chose Arduino as your core hardware, as

1

opposed to ESP32, RaspberryPi, or another microcontroller. For my beehive weighing
system, Arduino with C++ was the best compromise.

•	 Chapter 3 - The The build toolchain (page 2) - You have been using the Arduino IDE since
you first discovered Arduino. It is a great tool. As this book is going to print, Arduino just
released version 2 of its IDE, an improvement over the one we have been using (latest
1.8.19). Version 2 did manifest a few problems; I feel that it is not solid enough to fully
replace the old version (referred to as legacy Arduino). I dedicated a section to version
2 (Arduino IDE V2 specifics page 2) and covered version 1 more extensively (Arduino IDE
page 2) .

•	 Chapter 4 - Hardware setup (page 2) - Programming your chip is one thing. Getting
it to drive the electronics is another thing. Initial experimentation is usually done
on breadboards. You ultimately reach a point where the jumble of wires proves
unsatisfactory. This is when it is time to get the soldering iron out and migrate to
prototype boards. When the application runs properly and the design has been validated,
go for your own PCB with its own Atmel microcontroller. You may ultimately develop a
final professional grade SMT (surface-mount technology) PCB.

•	 Chapter 5 - Interoperability (page 2) - The Arduino IDE is a fantastically easy to use tool.
But, you will find that you will be much more productive if you adopt a professional
grade tool such as AtmelStudio (page 2), Visual Studio (page 2), Visual Micro (page 2), or
PlatformIO (page 2). And there will be times when you will want to switch to using one or
the other on a given project. Interoperability means seamlessly switching from one tool to
the other on the same set of files.

•	 Chapter 6 - Which IDE to work with? (page 2) - We have all started with the Arduino IDE
and are probably still using it for our daily Arduino work. But you would be considerably
more productive, and your application would be more robust, if you were to adopt a
professional grade tools such as AtmelStudio (page 2), Visual Studio (page 2), or PlatformIO
(page 2).

•	 Chapter 7 - Arduino IDE (page 2) - You probably know the Arduino IDE well. This chapter
presents its strengths and weaknesses.

•	 Chapter 8 - AtmelStudio (page 2) - If you are serious about programming Arduino, you owe
it to yourself to look into how much more you can do with AtmelStudio as compared
with the Arduino IDE, particularly when doing hardware-based debugging.

•	 Chapter 9 - Visual Studio (page 2) with Visual Micro (page 2) is practically the same as
AtmelStudio with Visual Micro. So, if you have switched from the Arduino IDE to
AtmelStudio, why not do your programming with Visual Studio/Visual Micro, it is far
more versatile and futureproofs your knowhow.

•	 Chapter 10 - Visual Micro (page 2) - This plugin is available for both AtmelStudio
(MicrochipStudio) and Visual Studio. It adds a serial monitor, an upload tool,
serial-based debugging, and more. As for Visual Studio, it renders Microsoft's flagship
IDE Arduino compatible.

•	 Chapter 11 - VS Code (page 2) is a Microsoft foundation tool which is designed to be
enhanced via extensions. PlatformIO, for example, is such an extension. It is well worth
knowing how to use it as it could meet a diversity of needs (Python programming, Perl...).

•	 Chapter 12 - PlatformIO (page 2), a VS Code extension, is a formidable tool which could

2 | Introduction

prove to be your choice if you intend to migrate to ESP32 or other microcontrollers.
•	 Chapter 13 - Other IDEs (Code::Blocks and MPLAB) (page 3) - Code::Blocks is a good free IDE

for C++ development but which, unfortunately, does not seem to be Arduino compatible.
MPLAB is a professional grade tool for general Microchip microcontrollers embedded
development.

•	 Chapter 14 - Debugging (page 3) - Three debugging techniques are presented: print-based
(Print-based Debugging Framework page 3), Hardware-based debugging (page 3), and Serial
debugging (page 3) provided by Visual Micro.

•	 Chapter 15 - Good programming practices (page 3) - Programming is a craft. A set of simple
guidelines, easy to implement but which require a little discipline, should contribute to
your improving your performance.

•	 Chapter 16 - Frameworks (page 3) are application independent modules designed to
accomplish specific tasks (data transfer, data storage, etc.). Taken together they constitute
a toolbox which enhances reuse, robustness, and productivity.

•	 Chapter 17 - Three Should know tools (page 3) are presented: regular expressions, Awk,
and Perl. Regular expressions (regex) (page 3) is a tool which does text searches using
wildcards. Do yourself a favor, learn the fundamentals of regular expressions. It
will provide you with unsuspected possibilities when doing text analyses, such as
search/replace, syntax analysis, etc. Awk (page 3) and Perl (page 3) are text processing
programming languages designed to implement complete programs. Awk is basically
used for search and replace. Perl is Awk with extended programming capabilities.

•	 Chapter 18 - From back of the envelope to final product (page 3) - Once you have gotten
the electronics to work, i.e. you have created a soldered prototype of your gizmo, you
may have to do a lot more work such as creating a PCB, fabricating enclosures, sensor
supports, and battery holders, whatnot. These require tools for creating PCB files (Gerber
files with Eagle page 3), a CAD tool to create 3D parts (Fusion 360 page 3), and get them 3D
printed (Zortrax 3D printing page 3). You will find descriptions of the tools I use and of
other tools I did some research on.

•	 Chapter 19 - The Appendix (page 3) expands on certain subjects: application code size,
DOS box, memory use, frameworks, misdoings, Awk, and Perl.

•	 Chapter 20 - The Bibliography (page 3) lists a few books which might be helpful to deepen
your C++ know-how. It also includes Web links and YouTube videos.

•	 A note on the book's source code (page 3) - This book and its companion Pragmatic C++
Arduino Programming contain C++ code, C++ frameworks, and Awk and Perl programs.
These are provided on an as is basis, free for noncommercial use, no guarantees
whatsoever as to quality and suitability, under an MIT type Open-Source Licensing basis
(go to https:// md-dsl.fr to download the code). The initial release is incomplete, I shall improve on
it progressively.

•	 About the author (page 3) - I, the author, have led a rich multi-national, multi-discipline
life. My current interests are beekeeping, flying the airplane I built (RV8), creating
electronic devices, 3D printing (Zortrax + Fusion 360), writing these books and possibly
more to come, and much more a retiree indulges in.

•	 Beehive weighing system (page 3) - This two-book set, Pragmatic C++ Arduino Programming
and Defensive C++ Arduino Programming, would not exist had I not embarked on creating

Introduction | 3

an Arduino-based beehive weighing system.
•	 The Index table (page 4) was designed so that you could find in it just about all of the

book's content meant to be accessed by pertinent keywords.
In a nutshell, the contents of these two books cover C++ knowhow, good programming
practices, IDEs and other tools, methodologies and procedures, and frameworks to help you be
more productive when creating large, fast, compact, robust, and maintainable Arduino-based
C++ applications.

4 | Introduction

Common sense and new tools

D eveloping the software to drive my Arduino-based beehive weighing system turned
out to be an unanticipated adventure. I developed methodologies which I qualify
as common sense and discovered new tools (AtmelStudio, Visual Studio, Visual

Micro, VS Code, PlatformIO, Perl, regular expressions) which enabled me to be considerably
more productive.
What follows is a set of common-sense directives and advice on tools to improve your
programming and the application's quality.
•	 Plan ahead - If a module gets a little complex, step away from the computer for a spell.

Sit down at a table with pencil, paper, and eraser to draw flow charts; list objectives,
requirements, parameters. Brainstorm the module, how it works, what it is meant to
accomplish. This phase is crucial. Assiduous attention to detail at this stage will save
you tons of time later on. Furthermore, when coding directly on the computer, your
hands being tied to the keyboards and your eyes glued to the screen, you are subject to
tunnel vision and to getting lost in details. A large table with paper and books spread out
liberates your mind. You are given free rein to enhance your creativity and imagination.
You are freer to express itself. You will do a better job.

•	 Top-down design, bottom-up details - Use wrapper functions and C++ classes to define the
big picture, top-down or outside-in. Use functions to handle details bottom-up or inside-out.

•	 Use a smart C/C++ editor - Imagine writing letters with Notepad as opposed to using Word.
Word will format text, correct spelling, do grammatical error checks. The same holds
with coding. A good programmer's editor will color text based on syntax, indent code,
do code completion, correct and/or signal errors, and much more. It is important to use
the correct tool for the job. Notepad++ or the embedded editors in AtmelStudio, Visual
Studio/Visual Micro, or PlatformIO are alternatives to the Arduino IDE.

•	 A good C/C++ compiler will generate good code and will error check or issue warnings.
Fortunately, all four IDEs covered will do this (Arduino IDE, AtmelStudio, Visual Studio
with Visual Micro, PlatformIO) since they incorporate the excellent GNU compiler.

•	 Migrate to Visual Micro for Visual Studio (page 5) - The Arduino IDE is great; without it,
you most probably would never have adopted Arduino. Visual Studio/Visual Micro is
more complete; the learning curve is short; and the Arduino sketch creation process is
easy and works well. Your productivity and programming comfort will be immensely
improved. They provide several other important features such as grammar checking as
you type, goto implementation, direct from error reporting to source code, and more.
Adopting them is a no brainer. What is more, it is possible to establish interactivity
between IDEs, switch from one IDE to the another in less than 30 seconds, by activating
an IDE specific #define macro. You could also envision using PlatformIO (page 6), but I
find Visual Studio/Visual Micro more user friendly. Program with Visual Studio/Visual
Micro; hardware-debug with AtmelStudio (see Hardware-based debugging page 6).

•	 Adopt Good programming practices (page 6) - There are resources (papers, videos,
seminars, etc.) which advise on procedures and good programming practices (upper/
lower-case, error checking, naming conventions, file organization). The sheer quantity is

 5

overwhelming and generally addresses professional programming teams. Having looked
at many of these, I compiled a subset of simple rules and procedures which should help
you reduce errors and render programs more readable: Adopt naming conventions, break
big functions up into several smaller functions thus easier to manage, comment your
code, etc.

•	 Frameworks (page 6) - Source file organization, data storage, memory management,
error reporting, etc. are tasks an application needs to implement. Frameworks respond
to such needs; these ready-made tools enhance the programmer's productivity and the
application's robustness.

•	 Memory management - Monitor RAM to avoid being out of heap or stack space. Bring
things out of scope early to release memory. Optimize data storage. Whenever possible,
encapsulate code in curly braces. Managing memory is one of the keys to robust, fast,
compact, efficient code. See Memory Management Framework (page 6) and Memory
structure (appendix) (page 6).

•	 Documenting your code is often an afterthought. My Perl based Program Documentation
Framework (page 6) meets two objectives: document the code in a highly organized
way (this cannot be overemphasized) and extract the corresponding documentation.
The golden rule being Comment! Comment! Comment! Why not use a little discipline to
structure these comments so that Perl could extract program documentation?

•	 Use Perl (page 6) as a static checker of vicious bugs - Simple mistakes like = instead of ==
in an if statement, or the reverse in an assignment statement, can remain unnoticed for
ages. Attempting to discover a problem's origin can eat up precious time. A Perl program
will extract all pertinent lines of code to enable you to peruse through them thereby
detecting potential problems. I used it on my 15000 lines application and found three
such mistakes. It saved me hours of debugging.

•	 Regular expressions (regex) (page 6) - If you are to use Perl, or profit from the fact that
professional grade IDEs (AtmelStudio, Visual Studio, PlatformIO) search functions
support regular expressions, then, by all means, learn how to use regexes. They can get
cryptic however you only need a basic understanding to quickly undertake tasks you
would have otherwise thought impossible. The learning curve is short.

•	 Hardware-based debugging (page 6) is a desirable activity since it should save on
debugging time. Hardware-based debugging is based on interfacing the microcontroller
with a hardware tool which enables step-by-step program execution (set breakpoints,
display variable values). Atmel proposes many tools, 3 of which seem to respond to
Arduino hardware-based debugging needs. These require that AtmelStudio be used.
Serial debugging (page 6), provided by Visual Micro, is an additional debugging method.
It lies halfway between print-based and hardware-based debugging. See Debugging (page
6).

6| Common sense and new tools

Why choose Arduino

T his book addresses the needs of Arduino developers who embark on major projects.
By this I mean a project that contains subsystems which interact with each other:
many modules, many conceptual entities, many files. The question remains: Why

choose Arduino for a particular project? There are lots of other microcontrollers. Why Arduino?
Most of us started using Arduino because it is readily available, inexpensive, and particularly
easy to work with. There are thousands of developers, possibly millions, which explains why
there are libraries for just about every electronic component. A GitHub search on Arduino yields
more than 100,000 results. And, it is inexpensive, but it carries a cost. Its main programming
language is C++, a professional grade language which can lead the inexperienced to excessive
debugging time. There is the alternative of using Python to program Arduino, but this carries
important costs, greater memory requirements, slower application, and reduced programming
possibilities. But programming is easier and faster.
It is a sure thing that, as with most things in life, a choice is a compromise. Certain criteria
weigh more than others in a particular context thereby tipping the scales. Here are reasons
for my having chosen Arduino and C++ for my Arduino-based beehive weighing system project:
•	 Cost - I developed my Arduino-based beehive weighing system for personal use, cost was

not an issue as long as it remained reasonable. But, lurking in the back of my mind, if
I succeeded in developing a sufficiently low-priced useful gadget, it could be turned
into a money-making venture. Low component costs thereby became high priority.
This implies the smallest possible program to minimize microcontroller size, thereby
imposing C++ right away. All other development languages take up considerably more
space and are slower. Hardware cost was another issue. My own PCB stand-alone
based Atmel microcontroller would be less expensive than designs using board-based
microcontrollers such as the ESP32 or RaspberryPi.

•	 Development tools - Most cross-development toolchains are costly from an Arduino
developer's perspective. They are reserved for professional teams, one main provider
being the Swedish company IAR Systems (check them out - http:// iar.com); they propose a
rich set of tools for just about every microcontroller. Luckily, Arduino developers may
use one of several free development environments, the Arduino IDE (page 7) developed
and maintained by the Arduino organization (htpp://arduino.cc), AtmelStudio (page 7), a
Microsoft Visual Studio specifically designed for Arduino microcontrollers, PlatformIO
(page 7), a plugin for Microsoft's VS Code targets embedded applications on numerous
microcontrollers, including the ESP32. Finally, you may opt for Visual Studio (Visual
Micro) (page 7), an almost identical twin of Visual Micro for AtmelStudio (MicrochipStudio)
(page 7).
Other IDEs (Code::Blocks and MPLAB) (page 8) are either not suited for Arduino
development (Code::Blocks) or entail an extensive learning curve (MPLAB).

•	 Sensors - There are thousands of Arduino compatible sensors, boards, and devices.
By Arduino compatible, I mean devices for which someone has developed an Arduino
interface in C/C++. This alone can tilt the scale in favor of Arduino. There is no point in
choosing a particular microcontroller if the desired device interface is not available.

7

•	 Community - When a problem arises, it is comforting to rely on a community of savvy
developers who can respond knowledgeably to an issue. The Arduino community is
huge. Just about every imaginable question has been posed.

Arduino with C++ was an obvious choice. I could have chosen RaspeberryPi because it is
powerful, can be programmed in Python, and sits on top of an operating system, which makes
it a minicomputer - keyboard, screen, and all. It is, however, more costly since it comes as a
board as opposed to Arduino whose Atmel microcontrollers can be bought as stand-alone
items.

8 | Why choose Arduino

The build toolchain

T here is a lot more to getting a microcontroller to do what you intend it to do than
downloading the Arduino IDE, creating a program, followed by a click on the build/
upload button. This is what you would do when trying out the Arduino IDE with

the Blink program. But, if you are to create an application which does substantial work, you
will necessarily end up with many functions, many classes, i.e., many lines of code in many
files. Upon attaining this level, you shall need to understand what is happening behind the
scenes to remain productive, i.e., what the Arduino IDE is doing. You shall also need to look
at debugging options other than putting occasional prints in your source code. And finally,
you should examine professional grade IDE's; they will enhance your productivity and their
learning curve is usually not steep.
This chapter covers the behind-the-scenes tools driven by the IDEs (compiler, linker, etc.). The
chapters which follow cover the IDEs individually, starting with the Arduino IDE.
When you create a program with the Arduino IDE and click the build/upload button, a great
deal of work gets undertaken behind the scenes. Understanding what is going on is essential
to your being able to figure out what is happening when things get a little awry. The only tool
you see is the Arduino C++ editor along with the IDE's toolbar. The behind-the-scenes tools
(compiler, linker, etc.) take your C++ code and magically do what it takes for you to witness
what your electronic gizmo does.
The build toolchain was extensively covered in the companion book Pragmatic C++ Arduino
Programming. Here is a recap:
•	 Intelligent C++ editor (next section) - Creating a program relies on a good editor with which

to write code. The source code is then passed to the preprocessor to handle macros, if
any.

•	 Make (page 9) - C++ being multi-module, make handles which modules the IDE is to
work on depending on their timestamp compared against the last build's timestamp. It
controls work so that it should only process files which have been modified since the last
build.

•	 Preprocessor (page 9) - C++ offers programmers a unique tool, the preprocessor. It
enables doing text substitution, conditional inclusions, and file assembly. These tasks
are controlled by macros which the preprocessor recognizes. Please note that this is
an extremely useful C++ feature not available in most other mainstream languages
although some may have third-party preprocessors available as plugins.

•	 Compiler (page 9) - Human readable programs (source code) need to be converted into
machine code for the target microcontroller.

•	 The Linker (page 9) assembles modules and library components into an executable.
•	 The Uploader (page 10) loads the executable into the microprocessor so that it be stored

inside one of its permanent memory, flash memory in Arduino's case.
•	 The Bootloader (page 10) is a program which resides in the microprocessor; it converts it

into being its own ISP (In System Programmer). The ISP is electronic hardware whose
role is to load a program into a microcontroller. The bootloader makes it so that the

9

microcontroller becomes its own ISP.
•	 Serial terminal (page 10) - If you want to send information to the outside word, you can

do so by displaying it on a screen connected to the microcontroller via a serial port. Your
application might not require your doing so; but, during the development phase, you
might want to investigate what it is doing. Your only recourse might be to print values as
the application runs; this is when a serial terminal comes in handy.

•	 Hardware setup (page 10) - Developing your gizmo may start out by piecemeal breadboard
proof-of-concept work gradually evolving to a final SMT (surface mount technology).
There are different types of hardware you may use at each stage of the development
process (breadboard, prototype board...).

•	 Debugging (page 10) - It is a fact of life that as you program, you make mistakes; your
program fails to work properly - it has bugs. Finding bugs is what debugging is all about.
You can do so by placing prints to get to know what your program is doing; or, you
can use a hardware-based debugger to stop the application as it runs, and look at the
program's state.

These are summarily described below. Debugging (page 10) is described in its own chapter.

1.1 Intelligent C++ editor
If you are to create a C++ application for your gizmo, you must write the code into a file and
feed it to the build toolchain. The editor should do a lot more than just indent code according
to its scope level. It should color code according to syntax; do name completion to help you
avoid misspelling already defined variables; functions, etc.; detect programming errors from
improperly written constructs, (missing parentheses, missing items,...); report undefined
entities...
Dedicated programmer editors such as Notepad++ and Arduino IDE V1.8 are basic editors.
Arduino IDE V2 begins to provide some editing enhancements. AtmelStudio (page 10), Visual
Studio (page 10), and PlatformIO (page 10) incorporate intelligent editors which vastly improve
programmer productivity.

1.2 Make
If your program is small, one or two small modules, you may resort to recompiling everything
and create the executable. But what if your program is large, 40 modules, 100,000 lines of
code. You should only recompile modules which have been modified since the last build, one
or two instead of forty. The IDE should create a make file which establishes which modules
to recompile and which modules to assemble to create an executable. Fortunately, all IDEs
covered in this book use make to control the build process.

1.3 Preprocessor
C++ has a unique feature referred to as macros. These are special variables which begin
with a # (pound sign) which the preprocessor recognizes. They enable accomplishing three
fundamental tasks:
•	 Text substitution - If you write #define BUFFER_SIZE 256, the preprocessor replaces every

occurrence of BUFFER_SIZE with 256.

10 | The build toolchain

•	 Conditional inclusions - You may want to differentiate targeting an ATmega328P from an
ATmega2560. You can do this by placing code inside an conditional inclusion such as
#ifdef ATMEGA328P...#else...#endif.

•	 File assembly - Files can be pasted inside other files via a macro such as #include <Arduino.
h>.

C++ is unique in that no other language except possibly Fortran formally offers this feature.
You may however find third-party preprocessors for other programming languages (Python
in particular).

1.4 Compiler
The compiler transforms human readable source code (.h/.cpp file) into machine code (.o file).
Because C++ applications can be very large, they are multi-module. The compiler works on one
module at a time.

1.5 Linker
The linker creates your program. Once the compiler has finished compiling all of a program's
modules, the linker assembles them, along with library components, into a whole, an executable,
also referred to as image (usually a .hex file).

1.6 Uploader
Once the executable has been created, it must be uploaded into the microcontroller. A
specialized program, avrdude, handles this task. It sends the program to an ISP, electronic
hardware whose job is to load (burn) the program into the microcontroller. One of the neat
features of Arduino boards resides in their becoming their own ISP via installed software,
referred to as a bootloader (next paragraph).

1.7 Bootloader
The ISP (In System Programmer) is a piece of electronic hardware which receives the program
via its com port and transfers it into the microcontroller's memory. An ISP must consequently
be placed between the development computer and the microcontroller board. The bootloader is
a program installed in an Arduino board which enables it to become its own ISP; an external
ISP is no longer needed. The price to pay is little less flash memory.

1.8 Serial terminal
It is all good and well to create a gizmo which opens a chicken coop door at sunrise and closes
it at sunset. But, during the development process, you may want to display info to understand
what the program is doing. You do this by writing to one of your computer's serial terminal
applications. The terminal could also be a LED screen connected to your board.

bugging

The build toolchain | 11

A note on the book's source code
 Frameworks source code: You may download the complete as is source code from https:// md-dsl.fr/c-ar-
duino-programming, modify code to your heart's content, and use it free of charge at your own
risk on a non-commercial or commercial basis. It is subject to an MIT open-source type license
agreement with some restrictions, as follows:

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to incorporate it inside of
an executable or other machine language component without restriction for personal
or commercial use. The Software may not be redistributed as source code or in any
recognizable human readable form in any form whatsoever for any use whatsoever.
The Software is the property of Michèle Delsol (France), copyright 2023, USA and
international. For any questions concerning use of the software contact Michèle Delsol at
CPParduino@md-dsl.fr.
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Note that some frameworks have benefited from extensive development work, and they are
quite solid; others are in their infancy and may be buggy.
You will find, throughout this book, code snippets, classes, functions... to illustrate how C++
works. They cover a lot of material. Some of them are short and to the point; others are longer
and can be more or less complex. I have tested all of them, at least I think I have, which means
that you might find omissions, mistakes, inaccuracies... If you happened to come across such
failings, please send me an email at cppArduino@md-dsl.fr explaining what it is you think is
wrong. I shall look into it, try to respond, and bring in corrections for the next edition of this
book, currently 1st edition.
My Web site account contains the frameworks, and Awk and Perl programs presented in
these two books. To download these, go to https:// md-dsl.fr/c-arduino-programming (a little over 1.5
megabytes).
You will also find notes and acknowledgements as to events concerning these two books in my
Web site https:/http;// md-dsl.fr.

12

About the author
The author, Michèle Delsol, born in France, educated in the USA (MIT - B.Sc., Sc.D.), now
retired and living in France, has worked in industrial firms in South America, the USA, and
France. For the last 25 years of her career, she was CEO and CTO of the company she created.
As CTO she gained experience working with Fortran, Forth, Lisp, Java, JavaScript, Visual
Basic, PHP, HTML, and C++.
Not shying from rolling up her sleeves, she is practical and dives into hands-on work. Her
passion for flying led her to build and fly her own airplane (RV8). She also claims some artistic
capabilities (the warthog and marmoset on the covers of this two-book tandem are hers), did
some acting (theater), and is now an enthusiastic beekeeper.
Her most recent electronics endeavor is an Arduino-based beehive weighing system to help monitor
her bees' wellbeing (full details in the author's book Defensive C++ Arduino Programming - see
Bibliography - C/C++ programming (page 39). It began as a back of the envelope idea which grew
into a full-fledged system. As the project progressed, from proof-of-concept of the individual
components to a comprehensive integrated system, the application grew to more than 35
files (15,000 lines of code). Her early development was fairly undisciplined and incremental,
which led her to too much time debugging - what was initially an enjoyable pastime became
a gruesome burden. She consequently stepped back and researched why programmers make
mistakes. She found that she needed to adopt good programming practices and use better
tools. It brought her to switch to AtmelStudio and later to Visual Studio/Visual Micro in lieu of
the Arduino IDE, to extensively review C++, to create frameworks to handle specific tasks, to
relearn adequate Awk and Perl to extract documentation from the source files, to learn regular
expressions, and to undertake other useful programming chores.
This experience led her to write extensive notes on the material she covered to keep track of
things as the literature and the Internet were lacking in resources for amateur programmers
who already programmed in C++. Or rather, there was too much material, most of which was
unprofessional, verbose, and did not address the question posed directly. Ask a simple question,
get long complicated responses. These notes gradually morphed into two books: Pragmatic
C++ Arduino Programming, a reference work to help already C++ savvy Arduino programmers
avoid the many gotchas C++ can throw at them, and Defensive C++ Arduino Programming which
presents C++ tools and frameworks to improve programmer productivity to write efficient,
robust, maintainable, and compact Arduino applications.
Her Arduino-based beehive weighing system is not quite finished. Future work would focus on
transferring her project to an Open-source Software team, on redesigning the PCB for SMT
technology, on implementing alternate communications to handle remote areas where GSM
is not available, on developing Web and smartphone based user-friendly interfaces, and more.
Whether these will be undertaken remains to be seen since she has other projects she intends
to work on. Amongst the many ideas that float in her mind, a device to detect Asian wasps
hovering in front of the beehives. She also plans to interpret a colony's activities via the sound
they make. These projects are a tall order - they imply learning and implementing digital signal
processing, digital image processing, and AI. These should keep her busy for years to come.
Needless to say, she is never bored. Aside from the shared benefits that beekeepers might gain
from her hard-won endeavors, her ongoing satisfaction lies in the challenge and the doing.

13

Beehive weighing system
Life being a collection of chance encounters, a friend of mine (Charlie H.) introduced me to
beekeeping, an immensely rewarding activity. One of my first tasks as a new beekeeper was
to monitor beehive weights via a hand-held scale. This information is crucial to assess how
bees are doing.
Another chance encounter (Daniel T.) introduced me to Arduino. It seems that life is conditioned
by chance encounters. Anyway, as soon as I understood what I could do with Arduino, I asked
myself: Why not hack an electronic Arduino-based beehive weighing system? On the surface the
idea was simple enough: get strain gages cannibalized from ordinary bathroom scales, throw
in opAmps, voltage regulators and a few other little gizmos. Add to that a GSM board, a radio,
and a clock and I would get the beehives' weights, temperatures, humidity, and battery voltages
on my cell phone. Simple! Nothing to it! Well, not quite.
To make a long story short: beekeeping + Arduino + C++ = electronic Arduino-based beehive
weighing system = challenge. Little did I know how much I did not know and just how much work
would be required to bring this project to fruition. Having defined how to get the data from
the beehives, and how to get them into my cell phone, I trudged along, slowly, and painfully. I
grossly underestimated the work and amount of learning required to get the system to function
as I would like it to.
My electronic know-how being limited to Ohm's law, the challenge proved to be daunting.
Being retired, with nothing in particular to do aside from keeping fit, maintaining social ties,
and being a law-abiding citizen, this project quickly became a full-time job. I was never bored.
I had to crash course transistors, opAmps and voltage regulators. Discovering this world was
fun. Getting an NPN/PNP transistor-based latch to work, and understanding why it worked,
brought me intense satisfaction.
As for Arduino, what a discovery! The microcontroller and the Arduino IDE are fantastic and
cost next to nothing. My enthusiasm was immediate. I first got breadboard proof-of-concept
prototypes working. I got strain gages which I pulled out of an electronic bathroom scale to
deliver a signal via an opAmp. Radio communications were based on XBee (Zigbee protocol). I
chose the DS3231 RTC clock to synchronize the units to minimize wakeup time. An A6 GSM
board established two-way SMS communications with my cell phone.

1.9 Beehive weighing system architecture
As I became savvier with the electronic components I could use, system characteristics slowly
percolated out of a host of possibilities:
•	 Parent-child architecture - I opted for a parent/child star network system as opposed to

independent beehive modules, each reporting directly. Children would be on beehives.
They generate data and send it to the parent (coordinator) which would be near-by. It
would collate data from the beehives and send the info to my smartphone.

•	 RF communications - The coordinator and beehives communicate with each other via RF
communications, no wires between the beehives. I chose a ZigBee based system (XBee).

•	 Batteries only - Since beehives are in remote locations, they require electrical autonomy,
making batteries necessary (18650 LiIon). I rejected the use of solar panels since they

14

would be conspicuous, obviously valuable items. There was every likelihood that they
get stolen.

•	 Cost - If the system were to become a commercially viable product, cost would be an
issue.

•	 Ease of use - The system needed to be flexible: When to weigh and how often, get data to
trigger notifications on specific events, etc.

•	 Interface with the outside world - I had to decide how to interface with the system (Firefox,
Lora, WiFi, Bluetooth, cell phone). I chose an A6 GSM board to communicate with my
cell phone as it seemed to be the easiest, most practical, and immediate solution.

Given three years of hindsight, I must say that the electronic aspect of the project was indeed
easy. However, the C++ program to manage the system proved to be a lot more complex than
anticipated. I was no longer inside an .ino sketch mindset - direct programming from mind to
computer. The application grew inexorably to 35 files of code at last count. I had to improve my
C++ know-how, develop new techniques, and change my mindset - professionalize my work.
As for my know-how, I had C++ experience. I poured over Kernighan and Ritchie's The C
programming Language. I then went on to Bjarne Stroustrup's The C++ Programming Language.
But my experience was rusty. I still have early editions of these books; I consider them
collectors' items.
I gradually improved and organized my programming by various means: C/C++ know-how,
good programming practices, frameworks, and better IDEs (AtmelStudio, Visual Studio
+ Visual Micro, PlatformIO). These helped me attain the desired objectives: productivity,
application maintainability and robustness, speed and compactness.
I have finished the first version of my Arduino-based beehive weighing system. The next phase
is to run it through its paces on several beehives and establish its resistance to weather. After
that, if I were to make it into a commercially viable product, I would need to undertake fairly
extensive work, incorporate less expensive components, use a cheaper radio, create alternative
interfaces to the outside world, and use SMT based PCBs to lower costs.

Where to from now
The current version of the beehive is functional however, several slight problems remain:
•	 The XBee radio modules are far too expensive ($30.00 apiece). Current work centers

around using BRF24L01modules. They come in at around less than $3 apiece.
•	 Using a cell phone to get data is cumbersome because of the limitations of an SMS

message and costly because of the requirement to pay for SIM cards.
•	 A friendly Internet based user interface to visualize data and schedule jobs needs to be

put together.
•	 Envision migrating from through-hole to surface mount technology (SMT).
As soon as these books get published, I shall resume work on the beehive weighing systems.

Beehive weighing system | 15

16 | Index table

Index table

Symbols
?

Regex lazy search 188
/*...*/

C-style comments collapse supported by AtmelS-
tudio and by the Arduino IDE 52

\
pass by reference Perl operator 311

%
Perl provides three variable types: $scalars, @

arrays, %hashes 313
+=

AddHive illustrates += operator overloading 174
=

= instead of == in an if or while, == instead of = in
an - assignment 109

=~
Perl pattern matching operator 207, 210

$ (dollar sign)
$0 - Awk: record just read in, Perl: program name

(also $PROGRAM_NAME) 205, 297, 311
Awk $ 1, etc. contains tokens of record just read in;

Perl contains captures from regex 297, 312
Perl $. alternate $INPUT_LINE_NUMBER or $NR,

line # of file being processed 312
Perl $, alternate $OUTPUT_FIELD_SEPARATOR, or

$OFS separates fields from each other 312
Perl $\ alternate $OUTPUT_RECORD_SEPARATOR

(default newline) 312
Perl $; alternate $SUPSEP - index separator, comma

by default 312
Perl $ARG - same as $ _, is the complete record

(line of text) 312
Perl $ARGV array contains current file name when

reading from <> array 312
Perl - $ _ contains the entire line that has just been

read 309, 312
Perl $INPUT_RECORD_SEPARATOR, or $RS, or $/ -

default \n 205, 307, 312
Perl $NR alternate $INPUT_LINE_NUMBER or $.,

line # of file being processed 312
Perl $OFS alternate $OUTPUT_FIELD_SEPARATOR

or $, separates fields from each other 312
Perl $RS alternate $INPUT_RECORD_SEPARATOR or

$/ - input record separator, default \n 312
Perl provides three variable types: $scalars,

%hashes, @arrays 209, 313
$File handle See Perl (file handles)
$ProjectDir, $TargetDir, $TargetName See AtmelStu-

dio (build)
3D Printing

3D printing starts with CAD tool 216
Fused deposition modeling, Stereolithography,

Selective layer sintering 217
I chose a Zortrax 200M 3D printer 216
Several 3D printing techniques available 216
Standardized file format .stl for 3D printing 216
Use Fusion 360 to design part 216

3D Printing See Fused deposition modeling FDM
@ARGV (Perl array)

Perl arg1 arg2... command line arguments stored in
@ARGV array 302, 312

@array See Perl (arrays)
@ (at symbol)

Perl @_ alternate @ARG array passes arguments
to a function 312

Perl @ARG or @_ - array passes arguments to a
function 312

Perl provides three variable types: $scalars,
%hashes, @arrays 313

__brkval
Address of begin heap instead of __flp when there

are no holes 282
#define See Macros
__flp

Address of begin heap when there are holes 282
-flto flag

Code size depends on -flto flag; reduce by 40%
 34, 57, 60, 221, 222

-fpermissive
AtmelStudio (import Arduino project) - add flag to

C/C++ compiler options 39
Converts compiler errors into warnings, build

completes 39
Included by default in Arduino IDE, PlatformIO, not

AtmelStudio 39
%hash

Perl provides three variable types: $scalars,
%hashes, @arrays 209

.h/.cpp files
Arduino loads all project directory .h/.cpp file into

 Index table | 17
the editor 27

.hex files See bootloader

.h files See Header files (.h)
#ifdef...#endif

Collapsing supported by AtmelStudio 52
#if, #ifdef, #ifndef, #endif See Macros and Project

Files Framework
#ifndef and #include See Macros and Header files
.ino See Arduino (build) - application entry file

(sketch)
{ } See curly braces
:: See DOS batch files
sign See Perl and Awk comment symbol, same as

C++ style //
-Wlint flag

Awk - use -Wlint command line flag to display
errors 203, 296

-Wlint flag See Awk (command line)
-Wundef See AtmelStudio (build)

A
Aardvark

Aardvark() contains original setup code, key
to interoperability; in Aardvark.h/.cpp
 20, 21, 22, 142

Aardvark See Arduino, AtmelStudio, Visual Studio/
Visual Micro, PlatformIO(interoperability)

Action-blocks See Awk (rules)
Algorithm Test Framework

Define execution paths and controlling param-
eters, then fill in real code 163, 259

Formal procedure to test program logic; logic and
work done are distinct concepts 163

Process: decision tree several levels deep 163
Start with flow diagrams to peg down algorithm's

logic 163, 259
Two-pronged process: methodology (plan on paper

and then code), and thinking (top down how
one thinks and bottom up fill-in the details) xvi

Unravel add beehive logic with flow diagram 259
Application code size See Code size
Application entry files

Arduino: .ino file, AtmelStudio and Visual Studio/
Visual Micro, PlatformIO: main.cpp 142

Arduino (build)
Arduino, AtmelStudio, PlatformIO, Visual Micro use

the GNU C++ compiler 5, 26
Arduino project's name is that of .ino file 27
avrdude uploads the executable into the microcon-

troller 26
Build command details 222

Compile/upload uses bootloader to upload
program 40

-flto and -fpermissive flags included by default in
Arduino IDE project properties 221

.ino file is Arduino's entry file (C++ source code)
 27, 142

Installs basic and third-party libraries 26
Loads all project directory .h/.cpp file into the

editor 27
main is generated behind the scenes, calls setup

and loop 28
setup and loop - mandatory functions for Arduino

programs; leave loop blank 28
Specify microcontroller and board, changing them

transparent to programmer 69
Suggestion: do not use loop, do inside setup 28

ArduinoBuilder See Code::Blocks
Arduino (caveats)

After a while, the Arduino IDE gives up, undo ctrl-Z
messes up code; fragmentation fault blocking
 30, 31

Compiler error reporting - must manually go to
file/line # to access code 55

ArduinoDev See Code::Blocks
Arduino (editor)

Button compiles and uploads application 27
Collapses curly braces, not AtmelStudio 123
Ctrl-L takes you to line # in file 56
Edit menu item changes workspace font size 59
Indentation, code collapsing not cosmetic 119
Serial monitor interfaces with board 28

Arduino (general)
Arduino chips are AVR type 111
Arduino distribution seamless installation; IDE,

libraries, toolchain, serial monitor 26, 27
Arduino tools are user-friendly and free, compo-

nents cheap, community huge 7, 25
Distribution includes: tools to create program,

libraries, upload, serial terminal 25, 26
For new Arduino IDE version see Arduino (version

2) 25
IDE for Atmel 8-bit and ESP32 boards, no hardware-

based debugging 25
IDEs: Arduino, AtmelStudio, Visual Studio, VS

Code, PlatformIO, Visual Micro 25, 88
Two versions: 1.8.19 (legacy) and V2 (new features)

 25, 28
Wraps tools inside a clean, practical interface 27

Arduino (interoperability)
ARDUINO_IDE macro enables Arduino IDE 22
Interoperability between Arduino IDE, AtmelS-

tudio, PlatformIO, Visual Micro, hassle free 23
Arduino (upload)

18 | Index table
Arduino build output 40
Full paths of avrdude.exe and avrdude.conf 40
Validate verbose checkbox in options to show

details of avrdude upload command 40
Arduino (version 2)

Click on compilation error in output window does
not take you to file/line 30

Copying text from serial terminal problematic 29
C-Style /*...*/ comments collapsing inoperant 30
Editor widows not undockable 29
Find/replace supports regular expressions 29
#ifdef…#endif pairs collapsible but renders function

not collapsible 30
Look and feel similar to legacy version 29
Major advance over version 1, long way to go 30
New features and minor problems 28
New output window: serial plotter 29
Problem loading code into ATmega328P-Xmini 29
Provides name completion on defined items 29
Refactoring does not seem to be supported any

more 30
Right click to visualize function declaration 29
Serial terminal is fixed bottom pane, not separate

window 29
Slow to open 29

arg1 arg2, etc. See Perl (command line)
ARGC, ARGV, ARGIND See Awk (command line)
ARM (Advanced Risk Machine) See Microcontrollers
Arrays See Awk arrays and Perl arrays
Atest.h/.cpp See File organization
ATmega328P-Xmini, ATmega2560RFR2 Xplained Pro,

Atmel ICE See Debugging hardware-based
ATmega2560 See Hardware setup
AtmelStudio (build)

$ProjectDir, $TargetDir, $TargetName define .hex
file location and name 41, 61

Add -fpermissive and -flto flags compiler flags 39
Add -Wundef to detect unused macros 39
Arduino, AtmelStudio, Visual Studio/Visual Micro,

PlatformIOuse the GNU C++ compiler 5
AtmelStudio upload tool parameters: identify

microcontroller, define COM port, baud rate 41
Build command details 223
External tool for upload not needed with Visual

Micro 37, 39, 42
Solution Explorer - add/choose existing Item 38

AtmelStudio (caveats)
Arduino core content seems locked into device first

compiled for 69
avrdude - cannot open input file error message

hard to see 61
avrdude fails to upload code into chip 43, 57, 60

Build fail due to inexistant file in project not in
error messages 58, 59, 67

Careful with find/replace Opened Documents 59
Code changes no effect on runtime 61
Code remains obstinately collapsed 59, 69
Code size by default 40% too large, needs -flto flag

 34, 57, 60, 221, 222
Does not support curly braces collapsing 46
Error and warning messages not displayed 65
Extra */ causes indentation failure 58, 62, 63
Failure to reckon with Debug vs. Release output

causes confusion 58, 61
File has 20+ functions, only two showed up in the

quick access selection box 58, 62
Importing Arduino project - directory navigation

bug on searching .ino file 37, 57
Indenting of if...else statement depends on where

opening curly brace is placed 58, 63
Make error from missing .cpp file drowned in reams

of messages 58, 65, 66
Mysteriously imports second set of header files

into ArduinoCore directory 58, 62
Occasional segmentation faults are benign; no

clues on causes; do rebuild to fix 58, 64, 65
Select device board does not seem relevant when

creating Arduino project 38
Workspace font size not documented; - '>' and '<'

become ',' and ';' on French keyboard - tied to
physical key, not to key mapping 57, 59

AtmelStudio (documentation)
Atmel (Microchip) Web site two inline doc

packages: Getting started and videos 35, 71
Inline help under the Help menu; VAssist help

under top level pull-down VAssist menu 71
AtmelStudio (editor)

Arduino monitor displays output 37, 44
Bookmark to navigate back and forth 46, 56
Change signature changes the name and the type

of a declaration and refactors 48
Clicking on function opens a goto multiple-choice

window for declarations 49
Code collapsing in AtmelStudio is outlining;

indenting is formatting 49, 52, 58
Collapses classes, functions, enums, ifs, whiles, etc.

and #ifdef...#endif pairs 46, 52, 123
Color coding highly customizable 45
Compiler one-click access to faulty line 46, 55
Create declaration in corresponding .h file 48
Ctrl-G takes you to line # in file 46, 56
Documentation above a function call 48
Editor displays colors: functions red, variables blue,

comments pale green, etc. 49
Establish Arduino IDE code collapsing #ifdef

 Index table | 19
interoperability by adding curly braces 53

Extensive user assist editor features 5, 33, 34, 44
Find reference: all uses of variable/function 48
Format document indents code entire file 63
Indentation, code collapsing not cosmetic 119
Indenting in AtmelStudio called formatting 63
Inline tasks provide multiple-choice text box to

rename, create, declare, etc. 34, 45
Insert snippet such as if, while, for, etc. 49
Intelligent window scrollbars provide quick access

to various tasks 45, 47, 50
Intellisense complementary to VAssist 44
Keyboard shortcuts tied to physical keys or to

symbol mapping 59
Keyboard shortcut to quickly comment/

uncomment highlighted sections 46, 54
Multiple-choice quick access to functions 45, 48
Name completion contextual popup opens 45, 51
Navigate to places recently worked on 46, 55
Refactoring - rename items throughout app

 46, 49, 54, 67
Right-click on function for quick access 48
Spell checks strings and comments 46, 56
Supports one-click all code collapse 52
Surround selected code with a for, if, etc. 49
Syntax checking - color goes black when there is a

programming error 34, 45, 49
Unnamed code blocks improve readability,

decrease RAM 53
VAssist has many help mechanisms 44
Workspace contains two splitable unpinnable work

windows and Solution Explorer 44, 46
AtmelStudio (file management)

$ProjectDir, $TargetDir, $TargetName define .hex
file location and name 41

AtmelStudio directories key to interoperability 21
AtmelStudio target release: Debug or Release 41
Differentiate projects (managed individually) from

solutions (managed as group of projects) 35, 37
Solution Explorer access project components 47

AtmelStudio (find/replace)
Careful with find/replace Opened Documents 67
Little orange patches in vertical scrollbars show

find location 50
Supports whole word, regular expressions, past

searches 34, 45, 50, 180
To change application wise item name, consider

refactoring instead of find/replace 67
AtmelStudio (general)

AtmelStudio Arduino compatible in two versions,
without and with Visual Micro 33

AtmelStudio is Atmel specific Visual Studio 33, 73
Develop with Visual Studio 2022 + Visual Micro,

hardware debug with AtmelStudio + Xplained
boards 74

Free, professional grade, short learning curve, easy
import of Arduino projects 33

IDEs: Arduino, AtmelStudio, Visual Studio, VS
Code, PlatformIO, Visual Micro 33

Improve productivity by orders of magnitude 5
MicrochipStudio is new name - continue referring

to AtmelStudio in book 33
Supports hardware-based debugging 33
Visual Micro brings AtmelStudio missing features:

upload tool, serial monitor, serial debugging 35
Visual Micro enables serial debugging w/o

dedicated hardware 116
AtmelStudio (hardware-based debugging)

Develop with Visual Studio 2022 + Visual Micro,
hardware debug with AtmelStudio + Xplained
boards 74

Hardware-based debugging with ATmega328P-
Xmini successful, with Atmel ICE not so 49, 111

Visual Studio plus Visual Micro and AtmelStudio +
the ATmega328P-Xmini 113

YouTube Atmel ICE tutorials 114
AtmelStudio (interoperability)

Aardvark() contains original setup code, key to
interoperability 20, 22

AtmelStudio Arduino project entry file sketch.cpp
contains setup and loop 21, 142

ATMEL_STUDIO macro to enable AtmelStudio 22
AtmelStudio's project name is Arduino project

name 35
AtmelStudio upload tool parameters: identify

microcontroller, define COM port, baud rate 41
Copy the Arduino sketch file (.ino file) and .h/.cpp

files into the AtmelStudio project files 21
External custom avrdude upload tool needed, not

with Visual Micro 39
External upload avrdude tool needed 37
Importing Arduino project procedure 18, 21, 36
Interoperability between Arduino IDE, AtmelS-

tudio, PlatformIO, Visual Micro, hassle free
 23, 34

AtmelStudio (keyboard shortcuts)
AtmelStudio V7 User Guide - 14 pages which

itemize keyboard shortcuts 70
Standard Windows shortcuts supported 71
Workspace font size not documented - '>' and '<'

become ',' and ';' on French keyboard - tied to
physical key, not to key mapping 59

Workspace font size not documented - '>' and '<'
become ',' and ';' on French keyboard - tied to
physical key, not to key mapping< 57

AtmelStudio project and solution See AtmelStudio

20 | Index table
(file management)

Avoiding bugs See Bugs (avoiding them)
avrdude

Arduino compile/upload uses avrdude to send .hex
file to board, bootloader uploads it 27

Arduino verbose details upload command 40
AtmelStudio requires external custom avrdude

upload tool , not with Visual Micro 37, 39
Full path of avrdude.exe and avrdude.conf 40

avrdude See Build toolchain
AVR See Microcontrollers
Awk (arrays)

Array indices can be integer, float, strings, similar
to key into database 203, 289

Arrays are associative, mix strings and numeric
values 289, 291

Arrays defined when array items used 290, 291
delete removes array items 290
length function yields number of items in one-di-

mensional arrays 290
Loop construct for (idx in array) facilitates array

traversal 290
Multi-dimensional arrays supported 289
Two-dimensional array example 292
Using multidimensional arrays is complex 290

Awk (Awk vs. C)
Array indices can be integer, float, string 203
End of statement semicolon not mandatory 203
Origins trace back to Unix, hence based on the C

language 202, 295
Print statement not quite literal, requires under-

standing its mechanics 203
Strings are 1-based 203
Supports regular expressions 203
The # sign signals a comment to end of line 203
Two variable types: floats and strings - they are

not declared, they are used 203
Variables used in functions are global 203
Your C knowhow can be a false friend 202

Awk (Awk vs. Perl) See Perl (Awk vs. Perl)
Awk (built-in variables and functions)

$ 1, $ 2, etc. - contain tokens of record just read in,
$0 contains entire record just read in 297

Command line variables particularly useful: ARGC,
ARGV, ARGIND 296

exit stops processing files; END called 297
FILENAME is file being processed, same as

(ARGV[ARGIND]) 295, 297
FNR is record number of file being processed; NR is

overall input record number 297
FS - fields separator (default " "); RS input record

separator (default "\n") 198, 297
next, getline interrupt rules processing 295, 298

OFS output filed separator controls whether space
printed when comma encountered 299

Output record separator - default is newline (ORS =
"\n") 198, 299

String functions: index, length, substr, match 298
Awk (caveats)

Careful with spaces in if, while, functions, etc.
parens must be against if, etc. 204

Cycling through array in C-style for loop may
create unwanted array items 289

Excessive simplicity cause of gotchas 203
Functions similar to C functions, may return value

of any type 202
Function variables global, parameters local 204
Individual characters are strings 204
Program particularly sensitive to spelling errors, no

warnings 296
Stray line of code silently interpreted as rule 204
Strings are 1-based 204
Variables typed when used - no declarations 204

Awk (command line)
Command line: Awk -Wlint -f MyProgram.awk file1

file2 ... > Output.txt 285
Contains flags, program, files to process 296
-Wlint flag displays errors 193, 285

Awk (examples)
Find macros regex: #define, #ifdef, etc. 294
Generate documentation from code comment

templates, list macros and enums 191
Generate function call reference - who calls who

and who gets called by whom 191
List potential misdoings e.g. = instead of == 191
Print subset of a file 191
Regex finds macros: #define, #ifdef... 199
Short database example Awk program 286
Two-dimensional array example 292

Awk (general)
Download Awk, go to SourceForge 285
Edit Awk, Perl programs with Notepad++ 197
Extract info from text files via logical statement &

regex 180, 190, 192
Learning curve is shallow - nothing to it 191
Program is sequence of condition/action-blocks

(rules) and functions 193, 198
Provides trig, log, type conversion, random

numbers math functions 300
Uses Awk may be good for 190
Why I started with Awk, then migrated to Perl

 190, 192
Your C knowhow, a false friend when learning Awk

 202
Awk (regex)

Find macros regex: #define, #ifdef, etc. 294

 Index table | 21
Parens-based captures not supported - Perl does

support it 191
Regex finds macros: #define, #ifdef... 199

Awk (rules)
Action-block similar to function - contains C-like

statements enclosed in curly braces 197
After loading new line, Awk tokenizes it 193, 195
BEGIN and END blocks do work at start and end of

program 195, 202, 295
Comment is # sign; down to end of line 196, 294
Concatenates files into set of continuous text

processed one line at a time 195
Condition based on pattern search: simple logical

statements or regexes 190, 195, 294
Condition only rule prints line if condition

successful 200, 295
Default record separator ORS is newline (line of

text); default field separator OFS is spaces or
tabs (word in line of text) 198

Files broken up into records, records into fields
(lines of text/words) 198

getline, next stops processing line 197, 295, 297
Invoke Awk from DOS box via command: program

name, -w option, file names 293
Logical statements for simple conditions, regexes

for complex ones, or mix of the two 200, 201
Multiple file processing passes possible 286
No condition rule is always true - action-block

invoked 200, 295
Print equivalent to C++'s Serial.print 298
Process text files with sequence of condition/

action-blocks (rules) 190, 194
Program is sequence of condition/action-blocks

(rules) and functions 190, 193
Provides arithmetic, increment, assignment, unary,

logical, text match operators and conditional
expression 298

Provides useful built-in functions and built-in
variables 196

Rule could be condition only or action-block only
 195

Rules use fields $ 1, $ 2, etc. from line tokenization
 199, 294

Supports standard C program flow control
operators if, while, for, etc. 297

Variables OFS, ORS control print's behavior 299
Awk (strings)

Similar to C++'s String class, char array 298
String functions: index, length, substr, match 298
Strings are 1-based 203

Awk (terminology)
Rules, conditions, action-blocks, statements,

fields... 194

Awk (variables and functions)
Function declaration starts with 'function' 202
Functions similar to C functions, may return value

of any type 196, 202, 295
Function variables global, parameters local 288
Variables created on the fly when first used 296
-Wlint flag warns nonexistent return 296

B
Batch files See DOS batch files
Beehive weighing system

Example of DataGroup Framework use 254
Frameworks required to improve beehive weighing

system program 139
How the beehive weighing system got me into

writing these two books xv, 325
Monitor weights, temperature, humidity; based on

RF communications and GSM board 325, 326
Test beehive weighing system execution paths with

Algorithm Test Framework; unravel add beehive
logic with flow diagram 259

BEGIN See Awk and Perl (build)
Bitfield Storage Framework

BitfieldStorage class provides bitfield storage via
inheritance 249

BitfieldStorage class requires info on variables
stored in VarCharacteristics; uses bit-masks to
operate on bytes 157, 251

Bitfield storage example, 3 arrays: JobData,
VarsMinMax, JobLabels data arrays 156, 157, 250

Job class inherits from the Bitfield class 156, 160
Optimize data storage via bitfield packed variables

 155, 248
Put bitfields in a structure to access them easily via

an offset from the structure's address 158
Variables accesses via enum driven generalized

Get/Set functions 158, 248, 249
Bjarne Stroustrup

Suggests not using macros 133
Bookmarks See AtmelStudio (editor)
Book's Web site (md-dsl.fr)

Events concerning book blogged in md-dsl.fr 321
For comments and info, please send email to

cppArduino@md-dsl.fr 321
Go to https://md-dsl.fr/c-arduino-programming for

a link to download most of the code in the two
books 321

Bootloader See Build toolchain
Bottom of stack See Memory (use)
Bottom-up design See Object-oriented program-

ming
Breadboards See Hardware setup

22 | Index table
Bugs (avoiding them)

Apply good programming practices and adhere
to Golden rules - check data, never assume
anything; do error handling 119

ATmega328P-Xmini - watch variables to find
glitches 6

Careful with compiler function parameter type
leniency and default initializations 129

Editor's auto indent detects bad curly braces 136
Inline comments clarify logic, fewer bugs 108
Ounce of prevention is worth pound of cure 106
switch default case missing or empty 279
Two-step approach: review code and apply

systematic validity checks 108
Bugs (possible causes and cures)

Application displays gibberish, restarts, etc. 107
Apply methodology for hard to find bug, under-

stand the logic 107
ATmega328P-Xmini - watch variables to find

glitches 107, 108
Brute force approach to finding glitches; pare

down application and rebuild progressively 107
First step to find glitch's cause, eliminate

randomness 107
Glitches worse programming problems one can

encounter; how does one fix them? 106
Strange behavior or crash - probably ran out of

memory 167
Type checking leniency creates bugs due to

undetected misplaced parameters 108
Build options See AtmelStudio and Arduino IDE

(build)
Build toolchain

Bootloader transforms board into self ISP 11
C++ editor, make, preprocessor, compiler, linker,

upload (avrdude) 9
Compiler --> source code to machine code 11
Intelligent C++ editor - AtmelStudio/Visual Studio

best 10
Linker assembles machine code files + library

components into executable file 11
Make - timestamp defines what to work on 10
Preprocessor enables text replacement, conditional

inclusions, pasting files 11
Serial terminal - visualize program output 12
Uploader (avrdude) loads executable into micro-

controller via an ISP 11

C
C++ Editor See Build toolchain
C++ exception handling See Exception handling

(C++) and Pseudo exception handling
Capture See Awk and Perl (regex), Regex (captures/

groupings)
catch, try, throw See Exception handling (C++) and

Pseudo Exception Handling
Character class See Regex (general)
Chunks of data See Data Packets Framework
Class and Function Names Referencing Framework

Automate class and function IDs insertion
 166, 263

class CandFnames does all the work 263
Framework used for event reporting 164
Identify classes/functions via IDs 164, 239
Instrumentation synchronizes class and function

enum lists with names 166
MemAllocEvt uses function IDs to report with

function names 171
Class Data Framework

Access data via Get/Set enum driven offsets
 148, 241

CLion See PlatformIO
cmd.exe See DOS box
Code::Blocks

ArduinoBuilder - third-party plugin to Code::Blocks
 103

Free, low learning curve C++ IDE; does not seem
suited for Arduino dev 103

FreematicsBuilder - third-party plugin to Code::-
Blocks 103

Code collapsing See Arduino IDE and AtmelStudio
(editor)

Code size
Are the IDEs as efficient code size wise 219
AtmelStudio code size by default 40% too large,

needs -flto flag 34, 222
Code size depends on compiler options and on

-flto flag; reduces size by 40% 221, 222
Compile time code size corroborated by heap

space at startup 222, 224
Develop with AtmelStudio, final release may be

preferable with Arduino 222
Identical compile/link options yield different RAM/

flash memory requirements 221
RAM used depends on IDE and use of PROGMEM

and F() macro 221, 224, 279
Code skeletons

Start application with code skeletons 136
When creating functions, templates ensure items

not forgotten 132
Code thrashing See Bugs
Collapsing code See Arduino IDE/AtmelStudio (edi-

tor)
Color coding See Arduino IDE/AtmelStudio (editor)
Command box See DOS box

 Index table | 23
Comments

Awk/Perl comment symbol is pound sign # 294
Comment closing curly braces and #endif 136
Comment! Comment! Comment! 126
Countless reasons for commenting code

 6, 119, 125, 126
Inline comments clarify logic, fewer bugs 108
Program Documentation Framework - use Awk or

Perl regexes to extract comments 108, 126, 233
Comments See Program Documentation Framework
Common sense See Good programming practices
Compiler See Build toolchain, Arduino, AtmelStu-

dio, Visual Studio/Visual Micro, PlatformIO(build)
Conditional inclusions See Macros
Conditions See Awk (rules)
Constants

#define or const variables to define constants;
centralize their location 121, 133, 134

Contiguous heap See Memory (heap contiguous)
Crash See Bugs
Critical available memory and critical reporting

macros See Memory (monitoring functions), Mac-
ros

Curly braces
AtmelStudio does not collapse curly braces;

Arduino IDE does 123
Comment closing curly braces and #endif 121, 136
Extra curly braces facilitate code collapsing 123
Initialize using curly braces 121

Curly braces See Arduino IDE and AtmelStudio (edi-
tor), Good programming practices

D
DataGroup Framework

Beehive weighing system good example 254
DataGroup class does the work: header defines

characteristics, body contains data 154, 252
Functions enable finding, inserting, removing

records and defragment storage 155
GetRecord/WriteRecord/RemoveRecord get/set/

remove data 253, 254
Index/sequential fixed/variable length data 154

Data Handling Frameworks
Bitfield Storage Framework stores data inside

bitfields 248
Class Data Framework accesses class data via

enums 241
DataGroup Framework supports index/sequential

fixed/variable length data 252
Data Packets Framework breaks data into chunks

for serial transmission 244
Event Storage Framework stores evens in

contiguous byte arrays 255
Format Driven float to byte Conversion Framework

reduces data size 245
Frameworks to handle data storage, data

conversion, data compacting 140, 147
Linked List Framework enables any class to store

values inside linked lists 257
Data Packets Framework

Break up data into chunks/packets 150, 244
Packet has header (start code, packet size, ID,

sequencing info), body (data), tail (end code,
checksum) 150

Packet is broken up into header (start code, packet
size, ID, sequencing info); body (data); tail (end
code, checksum) 151

Send/receive packets via serial ports 150
Validity checks: data received and checksum on

data 151
Debugging hardware-based

Arduino does not support hardware-based
debugging; Arduino V2 does 111

ATmega328P and ATmega2560 compatible with
hardware debugging with debugWire and JTAG
respectively 111

ATmega328P-Xmini Uno pin compatible supported
by AtmelStudio, success using it 6, 33, 111, 112

ATmega328P-Xmini - watch variables to find
glitches 6, 107, 108

ATmega2560RFR2 Xplained Pro - specialized
hardware for RF communications, not Arduino
boards pin compatible, success using it 111, 113

Atmel ICE - Not successful debugging Uno or Mega
 33, 105, 111, 113

AtmelStudio with specialized boards enable
hardware-based debugging 105, 111

Bugs categorized as glitches, code thrashing,
misdoings 105

Complementary tool relative to print-based
debugging, requires special hardware and
compatible IDE 110, 176

Debugging hardware must be compatible with
microcontroller architecture (AVR, ARM) 111

Develop with Visual Studio 2022 + Visual Micro,
hardware debug with AtmelStudio + Xplained
boards 113

Dragon Programmer, STK500/600 should enable
fixing bad microcontroller using HVPP 115, 116

Olimex - hardware-based debugger for ESP32 111
PlatformIO supports Arduino, ESP32 hardware-

based debugging, other 100
Watch corrupted variable to pause execution and

find glitch's cause 107, 108, 110
Debugging print-based See Print-based Debugging

24 | Index table
Framework

Debugging serial
Visual Micro enables serial debugging w/o

dedicated hardware 77, 78, 116
debugWire See Debugging hardware-based At-

mega328P
default case in switch statement See Bugs, Good

programming practices, Error Reporting Frame-
work, Misdoings

Defensive Programming
Good programming practices, plan and implement

procedures and frameworks, use professional
tools xv, 1

delete See Perl (arrays)
Dependencies See Header files (.h)
Development tools See Arduino, AtmelStudio,

Visual Studio, Visual Micro, PlatformIO, VS Code,
Code::Blocks, MPLAB

Documentation templates See Program Documen-
tation Framework

DOS batch files
Batch file example 229
Batch files enable multiple DOS commands 229
Displays output or redirects to file (> and >>) 229
ECHO prints a message in the DOS box 229
Launch Awk and Perl from batch files 229, 302
Manage batch file execution: START, TIMEOUT 228
May take parameters such as %1, %2, etc. 229
PAUSE interrupts processing, EXIT and ctrl-C closes

DOS box 229, 230
:: undocumented comment for batch files 228

DOS box
Awk invoked via DOS box - output screen or file

 196
cmd.exe (DOS box) launched from screen or

toolbar icon or run menu item 226
Copy/paste to/from other apps 230
Cryptic not found message 226, 227
DOS box in c:\Windows\System32\cmd.exe 226
Microsoft created DOS operating system for the

IBM personal computer 225
Other details you ought to be familiar with 230
Prompt looks like this: D:\Dev\Atmel> 226
Recalcitrant app? TaskManager (ctrl+alt+del) 230
Text user interface (old Unix type console) 225
Windows DOS box for text interface programs 225

DOS commands
basic set: CD, DIR, DEL, EXIT, MKDIR, COPY, XCOPY,

PAUSE, ECHO, REM 228
CD command to navigate to other directories 227
Do HELP for DOS commands 226
PATH displays or sets environment variables 227

..\ to backtrack one directory, .\ to proceed from
current directory 227

E
Eagle software

Electronic schematic and Gerber files; now in
Fusion 360 15, 214

Editor C++ See Arduino, AtmelStudio, Visual Studio,
VS Code, PlatformIO (editor), Notepad++, VS
Code

EEPROM (Electrically Erasable Programmable Read
Only Memory) See Memory (pools)

EGO trap
Avoid proving to yourself that you are an absolute

genius 136
Exploit C++ features sparingly 121, 136
Psychological factors extensively covered in

companion book Pragmatic C++ Arduino
Programming 136

END See Awk and Perl (build)
enums

class in enum declaration is scope specifier 134
enum lists begin with start, finish with end 135
enums better than #define macros 121, 134
enums synchronize multiple arrays 134, 149
Program Documentation Framework - enums are

often an alternative to macros 146
Specifier defines size of individual enum items 134

Error handling See Validate data
Error Reporting Framework

enums synchronize events with array strings 174
ErrorEvt and ErrorList inherit from LinkedItem and

LinkedList respectively 270
ErrorEvt class stores info on event and links them

as linked list (ErrorList) 173, 269
Handles error logging and reporting 174
switch default case missing or empty 173, 279

Error reporting macros See Macros and Print-based
Debugging Framework

ESP32
ESP32 chips are ARM devices 111
PlatformIO supports Arduino, ESP32 hardware-

based debugging, other 100
Supported by Arduino IDE and PlatformIO, not by

AtmelStudio 25, 91
Event-based programming See Arduino (build - loop

function)
Events See Memory Management Framework and

Event Storage Framework
Event Storage Framework

256 events (8-bits), 244 event (7-bits) 160, 255
enum driven Get/Set functions get/set events

 Index table | 25
packed in bytes 160, 255

Masks used to manage individual events 256
Predefined true/false conditions stored in 1 bit per

event byte array, saves RAM 160, 255
Specific classes could be created to handle distinct

event categories 161
Exception handling (C++)

Pseudo Exception Handling Framework - alter-
native to C++'s exception handling 172

try establishes landing point, throw returns back to
landing point, catch handles the problem 172

exit See Awk (built-in variables and functions)
External tools See AtmelStudio (upload)

F
False friends

Your C knowhow, a false friend when learning Awk
 202

Your C knowhow, a false friend when learning Perl
 205, 211

FDFBC class See Format Driven float to byte Conver-
sion Framework

Fields See Awk (general)
File handles See Perl (file handles)
FILENAME See Awk (built-in variables and functions)
File organization

Aardvark() contains original setup code, key to
interoperability 142

Class definitions in ClassSpecific.h/.cpp files 142
Do your testing in the ATest() function 143
Entry files - Arduino IDE: .ino file; AtmelStudio/

Visual Studio: Sketch.cpp; PlatformIO: main.cpp
 142

Functions.h/.cpp and FunctionsSKL.h/.cpp contain
general and application specific functions 142

Globals.h/.cpp contain #includes and global
variables; macros in Macros.h file 142

HelperFunctions.h/.cpp: service functions 142
#includes in Globals.h, pivot around which all

header files (.h) get included 144
Macros.h contains macro definitions 143
See Project Files Framework 142
Start development in Aardvark, called by setup,

then expand into other files 142
Flash memory See Memory (pools)
Flow diagrams See Algorithm Test Framework
F() macro See Macros, Code size, Misdoings
foreach See Perl (build)
Format document See AtmelStudio (editor)
Format Driven float to byte Conver-

sion Framework (FDFBC)
Beehive weighing system sensor values, FDFBC

reduces data transfer from 24 to 9 bytes 247
Converts float values to packed bytes and vice

versa, packing controlled by parameters, FDFBC
class does all the work 152, 245

float values stored in SensorFloatData[] 153
Parameters include packed byte size, decimals,

divider, range, offset 152
fpermissive See -fpermissive (compiler options) (first

page of index table)
Fragmented heap See Memory (heap fragmented)
Frameworks

Application independent tools designed to accom-
plish specific tasks 139

Do not reinvent the wheel - use frameworks 6
Frameworks source code: md_dsl.fr 321
Three types of frameworks: organizational, data

handling, specialized 139, 231
Frameworks See Organizational, Data handling,

Specialized Frameworks
Free IDEs

Arduino, AtmelStudio, PlatformIO, Visual Studio,
VS Code, Code::Blocks 103

Freematics See Code::Blocks
Function call nesting See Memory (use)
Function Creation Framework

Complete function skeleton example 238
Document functions exhaustively 147
Function template to create function 146, 236

Function level macros See Print-based debugging
Functions See Awk and Perl (variables and func-

tions)
Function template See Function Creation Frame-

work
Fused deposition modeling FDM

Cheapest most practical for 3D printing 217
Deposit molten plastic via nozzle 217
Each printer mfg. has own slicer tool 217

Fusion 360
Can import Tinkercad schematics 214
High end CAD design tool 215
Includes Eagle software (electronic schematic and

Gerber files) 214, 215

G
Gerber files See Hardware setup; Eagle (electronics

design)
getline See Awk (built-in variables and functions)
Gibberish See Bugs (avoiding them, causes, cures)
Github See Why choose Arduino
Glitches See Bugs (avoiding them, causes, cures)
Golden rules

26 | Index table
Comment! Comment! Comment! 126
Da Vinci: "Perfection lies in details, but perfection

is not a detail" 130
Do not fall into the EGO trap 121, 136
Do your homework, know your tools, update your

C++ skills, do not reinvent the wheel 121, 137
Good mental condition crucial to good work 121
KISS principle - simple solutions often better than

complex ones 119, 120, 130
The right tool for the right job crucial 5
Validate function parameters and return values;

never assume anything 120, 127, 172
Good programming practices (GPP)

Adhere to the 'Golden rules' (see above) 120, 127
A hobbyist mindset leads to extensive debugging

time xv
Be consistent, particularly when naming files,

functions, etc. 119, 122
Comment closing curly braces and #endif 121, 136
Common sense improves productivity 5, 6
Countless reasons for commenting code 119, 125
Don't neglect validity checks and error handling -

Check, Check, Check! 120, 127
Do your homework: know your tools, update your

C++ skills, do not reinvent the wheel 137
Efficient programming starts with good

programming practices xv
enums more flexible than #define macros 134
Exploit C++ features sparingly 121, 136
Indentation, code collapsing not cosmetic 119, 123
Initialize variables, whether local or global,

preferably with curly braces 121, 135
Monitor memory - prevent stack overflow and lack

of heap space 120, 129
Organize your code as separate files, .ino file

should be small 120, 128
Plan work offline, think before typing; thinking

hardest thing to do 119, 125, 126
Start application with code skeletons 121, 136
Use #define macros, const variables, enums

instead of hard coding values 121, 133
Wrap-up means stay focused 'til the task is

completed 120, 130
Greediness See Regex (greediness)
Groupings See Regex (captures/groupings)

H
Hardware-based debugging See Debugging hard-

ware-based
Hardware See Build toolchain
Hardware setup

ATmega2560 for development, smaller board for
final release 13

Breadboards enables rapid prototyping but has
drawbacks (unreliable serial communications,
spaghetti error prone wiring) 13, 14

Breadboards, prototype board, PCB, SMT 13
Eagle (now in Fusion 360) for the schematics and

Gerber files 15
PCB should have serial comm pins to interface

board with computer 15
Soldered prototype boards atop ATmega2560

board replace breadboards 13, 15
Hashes See Perl (variables) identified by % sign
Header files (.h)

Arduino.h, Macros.h included in Globals.h file,
#include <Arduino.h> in Macros.h 144, 232

AtmelStudio mysteriously imports second set of
header files into ArduinoCore directory 62

#ifndef prevents multiple .h file inclusions 231
#includes in Globals.h, pivot around which all

header files (.h) get included 144
Respect header file dependencies (top-down) and

beware of interdependencies 144, 232
Heap See Memory use
High voltage reset (HVPP) See Debugging hard-

ware-based
Holes See Memory (fragmented heap)

I
IDEs See Arduino, AtmelStudio, Visual Studio, Visual

Micro, VS Code, PlatformIO, Code::Blocks, MPLAB
IDEs See Which IDE to work with?
Image See avrdude (.hex file)
Import Arduino project See Interoperability
Incremental programming See Think
index See Awk (strings)
Input record separator See Awk and Perl (built-in

variables)
In-system programmer See avrdude (ISP)
Intelligent C++ Editor See Build toolchain
Intellisense See AtmelStudio (editor)
Interdependencies See Header files (.h)
Interoperability

Aardvark() contains original setup code, key to
interoperability 20, 22, 142

Arduino project's name is that of .ino file 27
AtmelStudio import hassle free 34, 37
Code::Blocks not suited for Arduino development,

does not create project 103
Common set of files independent of IDE 17
Create ATMEL_STUDIO, ARDUINO_IDE,

PLATFORM_IO macros 19
Develop with Visual Studio 2022 + Visual Micro,

hardware debug with AtmelStudio + Xplained

 Index table | 27
boards 113

How to establish interoperability 18
PlatformIO/AtmelStudio/Visual Micro interoper-

ability requires AtmelStudio one solution per
project scenario 36

PlatformIO creates main.cpp with empty setup and
loop 17, 99

Seamlessly switch between AtmelStudio, Visual
Studio, PlatformIO, Arduino IDE 17, 23, 34, 99

setup and loop located in application entry file
 142

Interoperability See AtmelStudio (interoperability)
and PlatformIO (interoperability)

ISP (in-system programmer) See avrdude

J
jmp_buf See Pseudo Exception Handling Framework
join See Perl (string)
json files See VS Code .json files
JTAG See Debugging (hardware-based ATmega2560)

K
KISS principle See Good programming practices
Know your tools See Good programming practices

L
Largest possible allocation See Memory (fragment-

ed heap)
Laziness See Regex (greediness)
length See Awk (strings), Awk (arrays)
Libraries See Arduino IDE (build)
Linear thinking See Think
Line of text See Built-in variables (Perl is $ _ ; Awk is

$0)
Linked List Framework

Based on LinkedItem and LinkedList 162
Individual items or entire list may be printed 257
LinkedItem::GetNext traverses linked list forward

'till desired item is attained 162
LinkedList class: GetFirst, GetLast... 162, 257
Linked list not constrained by item size and

number of items; can grow and shrink 161
Memory management and error reporting 162
Memory Management Framework logs allocations

and releases in linked list 170
Linker See Build toolchain, Arduino, AtmelStudio,

Visual Studio, PlatformIO(build)
Link time optimization See Code size
Lint like inspect utility See PlatformIO (general),

Misdoings (Perl program finds program flaws)
Literal characters See Regex (metacharacters)
Log events See Memory Management Framework

and Event Storage Framework
Logical statements See Awk (rules)
Logic testing See Algorithm Test Framework
longjmp See Pseudo Exception Handling Framework
Look ahead and look behind See Regex (look

ahead/look behind)
loop See Arduino IDE (build)

M
Macros

AtmelStudio collapses #ifdef; extra curly braces
facilitate cross platform code collapsing 123

Bjarne Stroustrup suggests no macros 133
Comment closing curly braces and #endif 121, 136
Critical reporting macros triggered when resource

runs low (voltage, memory...) 176
Error reporting macros print highly visible text to

describe errors 176, 177
Function entry and exit macros print details upon

entering and exiting functions 176, 270
Is const instead of #define better choice? 133
Memory use macros inform on current available

memory and heap fragmentation 176, 271
Milestone macros highlight program's location

 176, 271
Misdoings: Serial.print missing F() macro 109, 279
Parameterized name/value macro simplifies

printing a parameter's value 275
Preprocessor does text/replace via #define and

conditional inclusions via #ifdef 133
Print-based Debugging Framework defines macros

hierarchy 176
Print-based debugging macros display total,

contiguous, fragmented heap 177
main.cpp See PlatformIO application entry file
main function See Arduino, AtmelStudio, Visual

Studio, PlatformIO(build)
Make See Build toolchain
Manage data See Data Handling Frameworks
Manage files See Project Files Framework
Map mode See AtmelStudio (editor)
Masks See Bitfield Storage Framework and Event

Storage Framework
match See Awk (strings)
MaximumPossibleAlloc See Memory (heap frag-

mented)
Memory (heap contiguous)

Based on functions: TotalHeap, FragmentedHeap,
ContiguousHeap, MaximumPossibleAlloc 168

Contiguous heap between top of allocated
memory and bottom of stack 168, 282

Essential component of Memory Management

28 | Index table
Framework 264

Function calls require contiguous memory space
for stack frames 169, 171

Function nesting and recursion consume
contiguous heap space 171

Memory (heap fragmented)
Based on functions: TotalHeap, FragmentedHeap,

ContiguousHeap, MaximumPossibleAlloc 168
Essential component of Memory Management

Framework 264
__flp (holes) and __brkval (no holes) address of

start of heap 282
Fragmentation ratio: fragmented/total heap 284
FragmentedHeap function monitors extent of

memory holes 170, 284
Has holes from random memory releases 168, 281
Largest possible allocation: either largest hole or

contiguous memory 169, 283
Small holes may collectively yield a deceptively

large heap 284
Memory (heap total)

Total heap = fragmented plus contiguous heap;
reveals total available memory 169, 170, 283

Memory (leaks)
Could be a cause of lack of memory, depletes

available memory slowly but surely, do not
manifest themselves during testing phase 129

Memory Management Framework discloses
memory gluttons and memory leaks 167, 264

Memory Management Framework
Based on functions: TotalHeap, FragmentedHeap,

ContiguousHeap, MaximumPossibleAlloc
 169, 170

Enough contiguous heap? Hole large enough?
 169

Heap has two parts: fragmented and contiguous
heap 168

MemAllocEvt and MemAllocList - base classes for
managing allocations 169, 264

MemMgt - main class for handling memory
management events 264, 265

Memory allocations verify heap availability and
reveal memory leaks 6, 167, 171, 264

Memory Management Framework discloses
memory gluttons and memory leaks 171

Memory use macros provide a snapshot of
available memory 281

Overloaded new: memory management, verify
allocation success, log events 171, 174, 264

Memory (pools)
EEPROM writes limited to 100,000 154
PROGMEM and F() macro reduce code size 221

Memory (stack)

Bottom of stack found via programming trick 282
Function nesting and recursion consume too much

contiguous heap space 168, 171, 282
Hard code function memory requirements to

monitor stack needs 171
Memory allocation failure avoidable with memory

monitoring functions 167
Stack frame structure and size 283
Stack overflow thrashes memory allocations, may

go undetected a long time 129, 167
Memory (use)

Allocations add 2 bytes for allocation size 284
Bottom of RAM (system RAM) used for globals,

static, system variables 168
__flp (holes) and __brkval (no holes) address of

start of heap 282
malloc and new need how much memory to

allocate 284
Memory allocation failure avoidable with memory

monitoring functions 120, 129, 167, 171, 264, 282
Memory used as the application runs 168
Print-based debugging macros display total,

contiguous, fragmented heap 177
RAM memory and flash memory requirements 221
Total heap is fragmented plus contiguous 129, 282
Understand memory structure to optimize

memory use 129, 281
Memory use macros See Macros
Mental condition See Think
Metacharacters See Regex (metacharacters)
MicrochipStudio See AtmelStudio (general)
Microcontrollers

Choosing microcontroller is compromise; why
Arduino? xv

ESP32 chips are ARM devices 111
Microcontroller architectures: AVR, ARM, PIC 111
PIC (Programmable Intelligent Computer): both

AVR and ARM chips 111
Microsoft Disk Operating System See DOS box
Milestone macros See Macros
Mindset See Good programming practices
Mind to keyboard See Think - incremental program-

ming
Misdoings

= instead of == in an if or while or == instead of =
in an assignment 109, 277

Dumb mistakes not detected by compiler; found
by Perl FindMisdoigs.pl program 6, 109, 277

Regex missing F() macro in Serial.prints 109, 279
switch default case missing or empty

 109, 277, 279
MPLAB

 Index table | 29
May be overkill for Arduino dev 104

N
Naming conventions See Good programming prac-

tices
new (overloaded) See Operator overloading
next See Awk (built-in variables and functions) and

Linked List Framework
Notepad++

Edit Awk and Perl programs - configure it for Perl:
also useful for C++ editing 197, 207

O
Object-oriented programming (OOP)

Bottom-up design is fill in the details xvi, 5
Design your system the way you think - outside-in,

aka top-down xvi, 5
Olimex hardware debugger See Debugging hard-

ware-based
Operator overloading

AddHive += illustrates operator overloading 174
First create function to do the work 175
Overloaded new: memory management, verify

allocation success, log events 171, 174, 264
Organizational Frameworks

Function Creation Framework - Use function
creation template to create new functions 236

Program Documentation Framework - Document
your code 232

Project Files Framework - Organize your project's
files 231

Three frameworks help structure your files and
document source code 139, 141, 231

Other IDEs See Code::Blocks and MPLAB
Outlining See AtmelStudio (editor)

P
Packages See Perl (build)
Parameter default initializations See Avoiding bugs
Parameter validation See Golden rules
Pattern matching See Awk, Perl, and Regular ex-

pressions
PCB (Printed Circuit Board) See Hardware setup;

Eagle
Peripheral thinking See Think
Perl (arrays)

+ sign overloaded to enable merging arrays 309
Array indices must be integers - will convert non

integer indices to integer 307
Array @_ is mechanism to pass arguments to a

function 312
Convert $fileHandle to array via <...>, cycle with

foreach 209, 307
Create array as subset of existing array, from a Perl

list, or by tokenizing string 307, 309
Create individual array items on the fly 307
Create multidimensional arrays via nested square

brackets initializations 307, 310
Cycle through the entire array, via a for loop,

foreach loop, while loop 308, 309
Getting dimension of subarray requires

programming trick 311
Multidimensional arrays is cumbersome 310
Perl arrays are associative, can be mix of numeric

(float) and string values 191, 301, 307
Perl arrays can be sorted via the sort function 309
Perl provides three variable types: $scalars, @

arrays, %hashes 209, 307, 313
Process file via a shift function on array 209
push/pop add/remove last item in Perl array; shift/

unshift does same on first item 309
scalar gets number of items in one-dimensional

array 308
Perl (Awk vs. Perl)

Cycle through file names array with foreach,
process files with file handles 303

Does not support parens-based captures - Perl does
 191

Perl is better than Awk 190, 191, 210
Process same set of files several times - Awk limited

to processing set once only 192, 211
Simulate Awk with Perl or how to transform Awk

program to Perl 210, 301, 303
Perl (build)

Convert $fileHandle to array via <...>, cycle with
foreach 209

C's switch/case/default are named given/when/
default in Perl 307

Importing packages (use directive): strict,
diagnostic, features 'switch' 205, 208, 302, 313

Lists enable doing tasks on multiple items in one
line of code 192, 301, 306

Pass by value and by reference 206, 311
Perl handles records and fields 205
Perl provides three variable types: $scalars, @

arrays, %hashes 206
Perl's program structure resembles C's 208
Process files: foreach, while on $FileHandle

 209, 306
Program flow control mechanisms are supported,

namely for, if, switch (given), etc. 306
Scope resolution operator :: implements

namespace concept 206, 313
The text match operator =~ enables using a regex

in a statement 206

30 | Index table
Perl (built-in variables and functions)

$ARG or $ _ is the line of text (record) 309, 312
$ARGV array contains current file name when

reading from <> array 312
$INPUT_LINE_NUMBER, $NR, $. line number of file

being processed 312
$INPUT_RECORD_SEPARATOR, or $RS, or $/ -

default \n 307, 312
$OUTPUT_FIELD_SEPARATOR, or $OFS, or $,

separates fields from each other 312
$OUTPUT_RECORD_SEPARATOR, or $\ - default

newline 312
$PROGRAM_NAME, or $0, contains the Perl

program launched 205, 311
$SUPSEP or $; - index separator 312
@ARG or @_: arguments to function 312
@ARGV array: command line arguments 312
English pragma: AND instead of &&, OR instead of

|| 311
Input field separator - Perl does not seem to have

one 312
Perl supports the Awk like BEGIN and END 208
qq{}function enables embedding double quotes

inside of string without escapes 312
split and qw// functions automatically tokenizes a

line of text 312
Perl (command line - DOS box)

Invoke Perl directly or use batch file 302
MyPerlProgram.pl arg1 arg2... > Output.txt 302
Perl command line file/directory in arg1, arg2, etc.;

in @ARGV array 207, 302
Perl (file handles)

$filehandle created from file name string via the
open statement 205, 209, 304

Convert $fileHandle to array via <...>, cycle with
foreach 209, 305

Files in read, write, or update mode 205, 304
Process files: foreach, while on $FileHandle 209

Perl (general)
Edit Awk, Perl programs with Notepad++ or VS

Code 84, 205, 207
Handles text files and binary files 207
Included in Unix, Linux, and MacOS but not

Windows (download Strawberry Perl) 302
Perl details: download, use it, simulate Awk,

constructs strange from C/C++ perspective 301
Perl is better than Awk 191
Perl program creates program documentation

 108
Perl program looks for dumb mistakes: FindMis-

doings.pl 6, 109
Perl supports regex parens-based captures - Awk

does not 191, 206, 207

Powerful C-like programming language with regex
support 180, 190, 205

Why I started with Awk, then migrated to Perl 190
Your C knowhow, a false friend when learning Perl

 205, 211
Perl (strings)

Perl arrays to strings with list function 309
Perl string tokenization and concatenation

functions: split, qw//, join 309, 312
Perl supports string concatenations 305
qq{} function enables embedding double quotes

inside of string without using escapes 312
String interpolation differentiates a variable's name

from its value in print statements 306
Supports literal strings (single quotes) and interpo-

lated strings (double quotes) 211, 305, 306
Supports regex text match operator =~ 313

Perl (variables and functions)
BEGIN and END blocks executed at program start

and finish 207
Functions can pass by value or by reference 207
Functions have a name and a body but do not

have a parameter list 207, 211, 305
Functions may be called with parameters - unique

way of handling (via array @_) 207, 211, 305
Perl types differentiated by special characters:

$scalars, @arrays, %hashes 209, 313
Perl vs. C

Arrays are associative; index is integer based 211
Perl code resembles C but there are notable differ-

ences 211
Perl is a command line utility/interpreter 211
Pointers not supported 211
print statement items not necessarily inside paren-

theses 211
Regular expressions supported 211
sign same as C++ comment - ignore up to end of

line 211
Special character identifies variable's type: $ scalar,

@ arrays, % hashes 211
Perl Web site

Documentation on variables, functions, operators
 317

permissive See -fpermissive (first page of index
table)

PIC See Microcontrollers
Plain text matches See Regex (general)
Plan your work offline See Think
PlatformIO (build)

Build command details 223
-flto and -fpermissive flags included by default in

PlatformIO project properties 221

 Index table | 31
Uses Arduino distribution's GNU C++ compiler 5

PlatformIO (general)
Compatible with the Arduino project structure 94
Creates main.cpp with empty setup and loop 95
Find/replace supports regular expressions 180
Free, professional grade, easy import of Arduino

projects 23, 91
IDEs: Arduino, AtmelStudio, Visual Studio, VS

Code, PlatformIO, Visual Micro 77, 91
IDE supports cross-platform, cross-architecture,

multiple frameworks 23, 91
Installation - do it progressively, VS Code first 93
maker.pro presents interesting tutorial on

PlatformIO 100
Offers features beyond those offered by other IDEs

 94
Plugin for Microsoft VS Code and CLion 23, 91, 94
Project configuration in platformio.ini file 98
Provides facilities for lint like inspect utility 94
Supports hardware-based debugging wide range

microcontrollers 94
Supports multiple libraries packs 94
Supports version control, configuration

management, continuous integration 95
Web site (platformio.org) rich with info 100

PlatformIO (gotchas and caveats)
Build uses files in the project's source code

directory and subdirectories 102
Contents of directory not updated after directory

content changes 102
File editing window can be unpinned, editor reverts

to being simple notepad like 102
Has its share of gotchas and caveats 101
Import Arduino project location hard-coded 101
New com port not recognized 102
Platformio.ini file variable in wrong section not

reported 101
Removing file from project deletes it 102
The build/upload process works fine but no output

from program 102
Uploading a program fails: access denied 101

PlatformIO (hardware-based debugging)
Requires special Arduino Nano 33 or MKR boards

 100
Serial debugging not supported 100
Supports Arduino hardware-based debugging,

ESP32, other 100
PlatformIO (interoperability)

Creates main.cpp with empty setup and loop
 17, 22, 99

Interoperability between Arduino IDE, AtmelS-
tudio, PlatformIO, Visual Micro 23

main.cpp is PlatformIO's Arduino app entry file

(.ino replacement) 21
Operate in single- or two-level directory structure;

code in src_dir platformio.ini variable 21
PlatformIO Arduino project located in AtmelS-

tudio project base directory 18
Seamlessly switch between AtmelStudio,

PlatformIO, Arduino IDE, Visual Studio 17, 99
PlatformIO (platformio.ini file - project config.)

Com port defined in upload_port in platformio.ini
file 98

Define board with board = mega2560 or
AtMega328 in platformio.ini 97

Operate in single- or two-level directory structure,
code in subdirectory pointed to by src_dir 95

platformio.ini file contains sections/variables 98
PlatformIO project is folder which contains

platformio.ini file 95
Project configuration in platformio.ini file 98
Source code location defined in src_dir in

platformio.ini file 99
PlatformIO (project management)

Creates main.cpp with empty setup and loop 95
Open/Close project is Open/Close VS Code folder

 95
PlatformIO projects are VS Code folders 95
Project configuration in platformio.ini file 98

pop See Perl (arrays)
Pragmatic C++ Arduino Programming book

Explains why C++ can lead to excessive debugging
time and how to reduce it xv

Preprocessor See Build toolchain, Macros
Print-based Debugging Framework

Avoiding bugs - ounce of prevention is worth
pound of cure 106

Complementary tool relative to hardware-based
debugging 110, 176

Debug control macros turn debugging on/off
global, file, and function level 176, 275

Debugging macro level: global, file, function 110
Display function specific data and errors 176
Entry/exit macros provide parameter and return

values, and inform on selected items 270, 274
Macro categories: navigation, memory use, critical

situation, data values 110, 176, 270
Printing strategic data values, where the program

is at 110
Printed Circuit Board (PCB) See Hardware setup
PROGMEM (read-only data in flash memory)

Web sites which describes PROGMEM 316
Program Documentation Framework

Class and file documentation template store class
and file info 233, 235

32 | Index table
Comment! Comment! Comment! 126
Create program documentation via Awk/Perl regex

based comment extraction 126, 144, 233, 236
Example of comments extraction Aardvark 233
Finding functions using regexes complicated 239
Function template contains description, param-

eters, error checking, return values 235
PROGRAM KEYWORD START and END basis of

generalized info extraction mechanism 146
Starts with inserting comments, organize them as

templates (fill in the blanks) 232
Who calls who? Who gets called by whom? 236

Program logic See Algorithm Test Framework
Programming objectives

Enhance productivity, maintainability, robustness,
compactness, and speed 1

Monitoring code size important since premium on
RAM although speed might be a requirement 1

Project directory See Interoperability
ProjectDir See AtmelStudio (build)
Project Files Framework

Aardvark() contains original setup code, key to
interoperability 142

Atest.h/.cpp contain ATest() to do testing 143
Avoid interdependencies between .h files 232
ClassSpecific.h/.cpp files contain classes 143
Common sense dictates how to organize an appli-

cation's source code 120, 128, 142, 231
Entry files: Arduino: .ino file; AtmelStudio

and Visual Studio/Visual Micro: sketch.cpp;
PlatformIO: main.cpp 142

Functions.h/.cpp and FunctionsSKL.h/.cpp contain
general and application specific functions 143

Globals.h/.cpp contain #includes and global
variables; macros in Macros.h file 143, 232

HelperFunctions.h/.cpp: service functions 143
Macros.h contains macro definitions 143
setup and loop located in application entry file

 142
Prototype board See Hardware setup
Pseudo Exception Handling Framework

Alternative to C++'s exception handling based on
setjmp and longjmp 172, 267

Deep down the function call chain trigger longjmp
back to setjmp landing point 267

EErrorID identifies longjmp 172
longjmp (throw) - return landing point 172, 267
setjmp (try) sets landing point 172, 267

push See Perl (arrays)

Q
qw// and qq{} See Perl (string)

R
Radio transmission constraints See Format Driven

float to byte Conversion Framework
Random Access Memory (RAM) See Memory (use)
Redirection See DOS box
Refactoring See AtmelStudio (editor)
Regex (captures/groupings)

Grouping (capture) extracts of parens pair content
 185, 187

Grouping with '|' (OR) lists alternatives 185
Regex (examples)

Extract a variable's name; define floating-point
numbers 185

Find text enclosed in square brackets gotcha,
greediness issue 189

Generate subset of a file 181
Greedy vs. lazy search anything 185
Look ahead to find all Serial.??? which are not

prints 186
Perl and Awk program use regexes to extract

program documentation from source code 180
Regex missing F() macro in Serial.prints 279
Regex to find = instead of == in an 'if', or ==

instead of = in an assignment 277
Regex used to list enums and #defines, find unused

ones 181
Step-by-step example regex to find enums 186
Uncovers repeat words like the red red fox 181
ZIP code example gotcha or how laziness solved

the problem 185, 188
Regex (general)

Anchor means look for something at the beginning
^ or at the end $ of the line of text 183

Character class [...] defines what characters to
search for 182, 184

Many tools contain a regex engine - AtmelStudio
and PlatformIO find/replace, Perl, Awk, Word
(wildcards) 34, 45, 50, 180

Match - return true if regex is successful, false
otherwise 182

Regex engine is a generalized intelligent wildcard
protocol to find/replace text 6, 180

Regexes use two types of characters: literal
characters (what to search for) and metachar-
acters (regex operators) 182, 184

Regex segments combine individual patterns to
form elaborate ones 183

Regex (greediness)
Find text enclosed in square brackets gotcha,

greediness issue 189
Greediness means grab all it can before relin-

quishing control (speed); laziness means grab

 Index table | 33
one character only and let the regex continue
(functionality) 183, 188

Period/asterisk '.*?', period/plus '.+?' followed by
question mark means lazy search anything 185

ZIP code example gotcha or how laziness solved
the problem 185, 188

Regex groupings See Regex (captures/groupings)
Regex (look ahead/behind)

Condition search based on existing item 186
Look ahead to find all Serial.??? which are not

prints 186
Regex (metacharacters)

$ sign anchors search to end of text 185
Caret ^ used both as an anchor (beginning of text)

and negation in character class 185
Context defines whether pattern matching

character is metacharacter or literal 184
Escape (backslash \) transforms metacharacter

into ordinary character 182, 184
Literal characters: characters searched for 184
? means preceding segment is optional, also

means greedy or lazy when doing a search 184
Metacharacters are letters or symbols which

become pattern matching operators 184
OR symbol '|' means one of several alternatives

(choices) inside a parens group 185
Quantifier {1-x} means repeat 1 to x times 184

Regular expressions (regex) See Regex
Return values validation See Golden rules
Rules See Awk (rules)

S
say feature See Perl (build)
scalar See Perl (variables) identified by $ sign
Scope See Awk (variables and functions)
Scrollbars See AtmelStudio (editor)
Search and replace See AtmelStudio (find/replace)
Segmentation faults See Arduino IDE (caveats) and

AtmelStudio (caveats)
Sensor data conversion See Format Driven float to

byte Conversion Framework
Sensors

Thousands of Arduino compatible sensors, boards,
devices available 8

Serial communications See Format Driven float to
byte Conversion Framework

Serial terminal See Build toolchain, Arduino IDE
(editor) and AtmelStudio (editor)

setjmp See Pseudo Exception Handling Framework
setup See Aardvark, Interoperability, and Arduino

IDE, AtmelStudio and PlatformIO (build)

shift See Perl (arrays)
Simulate Awk See Perl (simulate Awk)
Size specifier See enum
Sketch

Name used to refer to Arduino's .ino file (program
entry file) 27

Sketch.cpp See AtmelStudio (interoperability)
SMT (surface mount technique) See Hardware setup
Solution See AtmelStudio (file management)
Specialized Frameworks

Algorithm Test Framework plan and test multiple
execution paths 259

Class and Function Names Referencing
Framework - IDs identify classes/functions 261

Error Reporting Framework - log errors and
warnings inside a linked list 269

Memory Management Framework informs on heap
space, memory use, memory gluttons 264

Print-based Debugging Framework - selectively
choose debugging print #defines 270

Pseudo Exception Handling Framework - alter-
native to C++'s exception handling 267

Seven framework toolkits to accomplish sundry
tasks 140, 162, 258

Specialized macros See Macros
Spell-checker See AtmelStudio (editor)
split See Perl (string)
SRAM (RAM) See Memory (use)
Stack frame

Determining stack frame size 283
Functions require contiguous heap space for stack

frame 171
Stack overflow See Memory use
Startup See avrdude (bootloader)
strict See Perl (build)
String interpolation See Perl strings
substr See Awk (strings)
Surface Mount Technology SMT See Hardware setup
switch feature See Perl (build)
switch statement default case See Bugs, Good pro-

gramming practices, Error Reporting Framework,
Misdoings

Syntax checking See AtmelStudio (editor)

T
Tables

Awk - short database example Awk program 286
Bitfield Storage Framework - Table of bitfield based

variables of Job class 156
RAM memory and flash memory requirements 221

Tab mode See AtmelStudio (editor)

34 | Index table
TargetDir and TargetName See AtmelStudio (build)
Task creation See Code skeletons
Task wrap-up phase See Wrap-up phase
Text find/replace See Macros
Text matches See Regex (general)
Text match operator See Perl (text match operator

=~)
Think

Easy to sit at the computer and code 126
Good mental condition crucial to good work; do

not rush, take breaks 132
Good programming practices 125, 126
incremental programming, i.e. mind to keyboard

can be a costly time wise trap 1
Linear thinking means focus and follow a path;

peripheral thinking means let your mind loose,
let it dwell around a subject 131

Planning offline before coding can save loads of
time 5, 120

Thinking hardest thing to do - requires effort
 119, 125

Through-hole technology See Hardware setup
throw, try, catch See Exception handling (C++) and

Pseudo Exception Handling
Tinkercad

Create visual breadboard wiring/schematics 214
Schematics exported to Eagle (Fusion 360) 214

Tokens See Awk (terminology)
Top-down design See Object-oriented programming
try, throw, catch See Exception handling (C++) and

Pseudo Exception Handling
Type checking leniency See Bugs

U
Undefined references See AtmelStudio (caveats)
unshift See Perl (arrays)
Update your C++ skills See Good programming prac-

tices
Uploader See Build toolchain, avrdude, AtmelStudio

build
use See Perl (build)

V
Validate data

Apply good programming practices and adhere
to Golden rules - check data, never assume
anything; do error handling 120, 127

Upon detecting error, undertake reporting and
decide what to do next 172

Variables See Awk and Perl (variables and functions)
Variables See Initializations

VAssist See AtmelStudio editor and documentation
Verbose See avrdude and AtmelStudio (import

Arduino project)
Version control See PlatformIO (general)
Visibility See Awk (variables and functions)
Visual Micro

AtmelStudio Arduino compatible in two versions,
without and with Visual Micro 33

Develop applications for Arduino, ESP32,
RaspberryPi, and others 77

Develop with Visual Studio 2022 + Visual Micro,
hardware debug with AtmelStudio + Xplained
boards 74, 113

Improve productivity by orders of magnitude 5
Interoperability between Arduino IDE, AtmelS-

tudio, PlatformIO, Visual Micro, hassle free 23
Provides a serial monitor, compile/link/upload,

serial debugging 77
Three identical Arduino plugins: for AtmelStudio

and for Visual Studio (2019 and 2022) 35, 77
Visual Micro enables serial debugging w/o

dedicated hardware 116
vMicro for AtmelStudio in top-level toolbar 77
vMicro for Visual Studio project location defined

from Arduino IDE preferences 78
vMicro for Visual Studio tucked away in Extensions

of top-level toolbar 78
Visual Studio

AtmelStudio is Atmel specific Visual Studio 33
Choose between two versions: 2019 and 2022 74
Create Arduino apps via Arduino project template

or via Visual Micro 73, 76
Debugging - only Serial debugging via Visual Micro

seems feasible 76
Develop with Visual Studio 2022 + Visual Micro,

hardware debug with AtmelStudio + Xplained
boards 74, 113

Expand your horizons with Visual Studio (Python,
Raspberry Pi... 74

Extensions for embedded development: Arduino,
ESP32, RaspberryPi, ... 73

IDEs: Arduino, AtmelStudio, Visual Studio, VS
Code, PlatformIO, Visual Micro 73

Improve productivity by orders of magnitude 5
Microsoft's flagship development tool - two

versions, 2019 and 2022 73
Multilanguage: C++, C#, Python... and multi-

platform: Windows, MacOS, Linux 73
Out-of-the-box Arduino Project Template solution

creates both .ino file and command line .exe
program 75

Straightforward installation, two Arduino dev
solutions 74

 Index table | 35
Visual Micro for Visual Studio identical with Visual

Micro for AtmelStudio 76
Visual Studio Code

See VS Code 79
Visual Studio Code See VS Code
vMicro See Visual Micro and Debugging serial
VS Code

Awk extensions 88
C++ extension 87
Edit Awk, Perl programs with Notepad++ or VS

Code 84
Extensions can be installed/uninstalled and

enabled/disabled 80, 84
File, folder, workspace used for project

management 80, 83
Find/replace supports regular expressions 80
IDEs: Arduino, AtmelStudio, Visual Studio, VS

Code, PlatformIO, Visual Micro 79
Microsoft's programming foundation platform 79
Multilanguage: there are extensions for C++,

Python, Perl... 80
Perl extensions 88
Provides source control via Git repository 80
Regular expressions extensions 88
User interface appearance 82
User space vs. workspace 80
VS Code features 80

VS Code caveats
Arduino-cli failed to get installed 89
Unable to remove folder from active folders list

 89
VS Code does not support the concept project

content/disk content 89
VS Code .json files

Data files organized as text key-value pairs 88
Value is string, number, Boolean, array, other json

object 88

W
Warnings See Awk (command line) and Perl (build)
Web site See Book's Web site
Which IDE to work with?

Arduino readily available, inexpensive, particularly
easy to work with, required by other IDEs 7, 23

AtmelStudio best: solid, professional tool, supports
hardware-based debugging 23, 33

Code::Blocks does not seem suited for Arduino
development 103

Develop with Visual Studio 2022 + Visual Micro,
hardware debug with AtmelStudio + Xplained
boards 74

GitHub search on Arduino yields more than
100,000 results 7

Interoperability possible between Arduino IDE,
AtmelStudio, Visual Micro, PlatformIO 23

MPLAB may be overkill for Arduino development
 104

PlatformIO - free, professional grade, easy import
of Arduino projects 23, 91

Short list: Arduino IDE, AtmelStudio, Visual Studio,
PlatformIO, VS Code 23

Visual Micro - plugins for AtmelStudio and Visual
Studio Arduino work 77

Visual Studio - highly professional multi-language
development tool 73

VS Code - a foundation upon which many tools are
created, including PlatformIO 79

while See Perl (arrays)
Workspace font size See Arduino IDE and AtmelStu-

dio (editor)
Wrap-up phase

Adhere to good programming practices; stay
focused 'til the task is completed 120, 130

Code skeletons help ensure items not forgotten
 132

Wundef See AtmelStudio (import Arduino project)

